The generation of the entanglement between two two-level atoms interacting with the third atom driven by white noise is investigated when the coupling between atoms is modulated by a pulse function. This paper finds that the initial triggering time and the width of the pulse can generate a peak in the entanglement. There is an optimal width of the pulse for which the entanglement can reach a maximum. The asymmetry of the coupling between atoms can generate different entanglement in the system. The multiple triggers can generate multiple peaks in the entanglement. The separation between two peaks is increased as the width of the pulse is increased.
The entanglement in an anisotropic spin-1 Heisenberg chain with a uniform magnetic field is investigated. The ground-state entanglement will undergo two different kinds of transitions when the anisotropy △ and the amplitude of the magnetic field B are varied. The thermal entanglement of the nearest neighbour always declines when B increases no matter what the value of the anisotropy is. It is very interesting to note that the entanglement of the next-nearest neighbour can increase to a maximum at a certain magnetic field. Regardless of the boundary condition, the nearestneighbour entanglement always decreases and approaches to a constant value when the size of the system is very large. The constant value of open boundary condition is much larger than that of periodic boundary condition.