Hydraulic machinery mainly includes turbine and pump, which is closely related to national economy and people's livelihood involving aerospace industry, marine engineering, hydropower engineering, petroleum industry, chemical industry, mining industry, biomedical engineering, environmental engineering, agricultural water-soil engineering, etc.. The internal flow of hydraulic machinery is extremely complex, and its characteristics can be summarized as high Reynolds number, multi-scales, inhomogeneous and vortex-dominant unsteady turbulence which interact with the rotating dynamic boundary(rotor blade). Based on the analysis of the internal flow characteristics of hydraulic machinery, the author and his research team successively proposed a rotation correction model, a curvature corrected filter-based model, a scalable detached eddy simulation method, and a non-linear hybrid RANS/LES turbulence model to capture unsteady flow structures and then predict hydraulic performance and dynamic characteristics more accurately. According to the analysis on the internal flow, the corresponding flow control measures were put forward. It was verified by experiments that these methods could significantly improve the hydraulic performance, anti-cavitation performance and dynamic characteristics(pressure pulsation and vibration) of hydraulic machinery in a certain range of operating conditions. In addition, the mechanism how flow control measures influence internal flow was analyzed in depth, aiming at finding a feasible and effective way to improve hydraulic performance, anti-cavitation performance and dynamic characteristics of hydraulic machinery.
The nonlinear hybrid RANS/LES method has been developed considering the simulation efficiency and accuracy to simulate the hydraulic dynamic characteristics of the centrifugal pump. It has been proved that the nonlinear hybrid RANS/LES method could effectively capture the unsteady flow structure and pressure pulsation in 2?D centrifugal pumps. To further investigate the hydraulic dynamic performance of a redesigned 3-D-gap drainage centrifugal pump, the nonlinear hybrid RANS/LES method is employed. Both numerical simulation and experimental results show that the hydraulic performance and pressure pulsation characteristics of the 3-D-gap drainage impeller centrifugal pump are significantly enhanced.
Zheng-chuan ZhangHong-xun ChenZheng MaQun WeiJian-wu HeHui LiuChao Liu