A method of suppressing the multimodal size distribution of InAs/GaAs quantum dots(QDs) using molecular beam epitaxy through flattening the substrate surface is reported in this work.It is found that the surface roughness plays an important role in the growth of QDs through continuous surface evolution(SEQDs).SEQDs are the main components of small QD ensemble in QDs with multimodal size distribution.It is suggested that most of the SEQDs are very likely to nucleate during the growth interruption rather than during the deposition.The growth of QDs on a smoother surface has largely reduced the density of SEQDs.The photoluminescence line width of uniform QDs is found to be only 17 meV at a low temperature.
WANG Lu1,2,LI MeiCheng1,WANG WenXin2,GAO HanChao2,TIAN HaiTao2,XIONG Min1 & ZHAO LianCheng1 1 School of Material Science and Technology,Harbin Institute of Technology,Harbin 150001,China
The interface between graphene and organic layers is a key factor responsible for the performance of graphene-based organic solar cells(OSCs). In this paper, we focus on coating PEDOT:PSS onto the surface of graphene. We demonstrate two approaches, applying UV/Ozone treatment on graphene and modifying PEDOT:PSS with Zonyl, to get a PEDOT:PSS well-coated graphene film. Our results prove that both methods can be effective to solve the interface issue between graphene and PEDOT: PSS. Thereby it shows a positive application of the composited graphene/PEDOT:PSS film on graphene-based OSCs.
The crack propagation and domain switching process around the indentation on the surface of barium titanate single crystal under the external electric field was investigated by atomic force microscope and polarized light microscope. The evolutions of domain switching and crack propagation were in-situ observed when a 90°a- c domain wall moved across the indentation which was driven by external electric field. The results show that the incompatible strain induced by domain switching in the residual stress zone around the indentation is the driving force of the anisotropic crack propagation. The crack propagation results in the changes of the fine domain stripes around the crack tip.