In this paper, we investigate diamond crystallization in Fe-Ni-C with an aluminum additive and the capability of aluminum for converting graphite to diamond in a series of experiments at 4.9-5.5 GPa and 1240-1500℃. Our experimental results show that the growth habits of diamond crystal have been significantly influenced by the addition of aluminum as a catalyst. The crystal color changes from yellow to nearly colorless. The morphology of the synthesized diamond crystals gradually changes from cubic-octahedron to octahedron in the Fe-Ni-C systems with increasing aluminum additive. The lowest synthesis conditions fell first and then rose with increasing aluminum. We found a suitable addition of aluminum is very effective in lowering the synthesis conditions while an excessive aluminum additive may have a suppressive effect on the diamond nucleation.
Nanostructured skutterudite-related compound Fe0.25Ni0.25Co0.5Sb3 was synthesized by a solvothermal method using FeCl3, NiCl2, CoCl2, and SbCl3 as the precursors and NaBH4 as the reductant. The solvothermally synthesized powders consisted of fine granules with an average particle size of tens of nanometers. The bulk material was prepared by hot pressing the powders. Transport property measurements indicated a heavily doped semiconductor behavior with n-type conduction. The thermal conductivity is about 1.83 W·m-1·K-1 at room temperature and decreases to 1.57 W·m-1·K-1 at 673 K. The low thermal conductivity is attributed to small grain size and high porosity. A maximum dimensionless figure of merit of 0.15 is obtained at 673 K.