Studies of wind erosion based on Geographic Information System(GIS) and Remote Sensing(RS) have not attracted sufficient attention because they are limited by natural and scientific factors.Few studies have been conducted to estimate the intensity of large-scale wind erosion in Inner Mongolia,China.In the present study,a new model based on five factors including the number of snow cover days,soil erodibility,aridity,vegetation index and wind field intensity was developed to quantitatively estimate the amount of wind erosion.The results showed that wind erosion widely existed in Inner Mongolia.It covers an area of approximately 90×104 km2,accounting for 80% of the study region.During 1985–2011,wind erosion has aggravated over the entire region of Inner Mongolia,which was indicated by enlarged zones of erosion at severe,intensive and mild levels.In Inner Mongolia,a distinct spatial differentiation of wind erosion intensity was noted.The distribution of change intensity exhibited a downward trend that decreased from severe increase in the southwest to mild decrease in the northeast of the region.Zones occupied by barren land or sparse vegetation showed the most severe erosion,followed by land occupied by open shrubbery.Grasslands would have the most dramatic potential for changes in the future because these areas showed the largest fluctuation range of change intensity.In addition,a significantly negative relation was noted between change intensity and land slope.The relation between soil type and change intensity differed with the content of Ca CO3 and the surface composition of sandy,loamy and clayey soils with particle sizes of 0–1 cm.The results have certain significance for understanding the mechanism and change process of wind erosion that has occurred during the study period.Therefore,the present study can provide a scientific basis for the prevention and treatment of wind erosion in Inner Mongolia.
The Yalu Tsangpo River basin is a typical semi-arid and cold region in the Qinghai-Tibet Plateau, where significant climate change has been detected in the past decades. The objective of this paper is to demonstrate how the regional vegetation, especially the typical plant types, responds to the climate changes. In this study, the model of gravity center has been firstly introduced to analyze the spatial-temporal relationship between NDVI and climate factors considering the time-lag effect. The results show that the vegetation grown has been positively influenced by the rainfall and precipitation both in moving tracks of gravity center and time-lag effect especially for the growing season during the past thirteen years. The herbs and shrubs are inclined to be influenced by the change of rainfall and temperature, which is indicated by larger positive correlation coefficients at the 0.05 confidence level and shorter lagging time. For the soil moisture, the significantly negative relationship of NDV-PDI indicates that the growth and productivity of the vegetation are closely related to the short-term soil water, with the correlation coefficients reaching the maximum value of o.81 at Lag 0-1. Among the typicalvegetation types of plateau, the shrubs of low mountain, steppe and meadow are more sensitive to the change of soil moisture with coefficients of -0.95, -0.93, -0.92, respectively. These findings reveal that the spatial and temporal heterogeneity between NDVI and climatic factors are of great ecological significance and practical value for the protection of eco-environment in Qinghai-Tibet Plateau.