Mechanical and electrical damages are introduced to study the fracture mechanics of piezoelectric ceramics in this paper. Two kinds of piezoelectric fracture criteria are established using the method of least squares combined with a damage analysis of the well-known piezoelectric fracture experiments of Park and Sun’s. One is based on a linear combination of the mechanical and electrical damages and the other on their nonlinear combination. When the combined damage D is up to its critical value Dc, piezoelectric fracture occurs. It is found from the qualitative comparison of the numerical results with the experimental data that the nonlinearly combined damage fracture criterion can give a better prediction of piezoelectric fracture. And it is concluded from the nonlinearly combined damage fracture criterion that a negative electric feld impedes fracture whereas the efect of a positive electric feld on fracture depends on its magnitude.
The authors have developed a two-dimensional model for the extension and flexure response of electroelastic plates under biasing fields in a curvilinear coordinate system. Applications of the model in analyzing buckling of two circular piezoelectric plates, one single-layered and the other double-layered, are included. The analysis indicates that the piezoelectric coupling has a strengthening effect against buckling.
Hu YuantaiChen ChuanyaoLi GuoqingYang JiashiJiang Qing
Constitutive relations for nonlinear, isotropic, electroelastic solids quadratic in the ?nite strain tensor and the referential electric ?eld are derived from the full nonlinearity theory of electroelasticity by tensor invariants, which can describe the behavior of electrostrictive ma- terials. The equations are linearized for small, dynamic ?elds superposed on ?nite, static biased ?elds. These linear equations are used to study plane waves propagating in an electroelastic body under various mechanical and/or electric biased ?elds. It is shown that the speed of the acoustic waves exhibits a strong dependence upon those material parameters in the nonlinear constitu- tive relations. Experimental determination of these material parameters using this dependence is discussed.