您的位置: 专家智库 > >

国家自然科学基金(10871188)

作品数:7 被引量:7H指数:1
相关作者:吴耀华刘显慧王占锋金应华刘驰宇更多>>
相关机构:中国科学技术大学更多>>
发文基金:国家自然科学基金中国科学院知识创新工程更多>>
相关领域:理学农业科学更多>>

文献类型

  • 7篇中文期刊文章

领域

  • 7篇理学
  • 1篇农业科学

主题

  • 2篇英文
  • 1篇散度
  • 1篇删失回归模型
  • 1篇随机加权
  • 1篇随机加权逼近
  • 1篇加权逼近
  • 1篇渐近
  • 1篇渐近正态
  • 1篇渐近正态性
  • 1篇M估计
  • 1篇NONLIN...
  • 1篇PARTIA...
  • 1篇PRODUC...
  • 1篇RESTRI...
  • 1篇SCA
  • 1篇ED
  • 1篇EMPIRI...
  • 1篇ESTIMA...
  • 1篇ESTIMA...
  • 1篇LINEAR

机构

  • 3篇中国科学技术...

作者

  • 3篇吴耀华
  • 1篇王占锋
  • 1篇刘驰宇
  • 1篇刘显慧
  • 1篇金应华

传媒

  • 3篇Acta M...
  • 2篇中国科学技术...
  • 1篇系统科学与数...
  • 1篇Scienc...

年份

  • 1篇2018
  • 3篇2013
  • 1篇2012
  • 2篇2009
7 条 记 录,以下是 1-7
排序方式:
Analysis of φ-divergence for Loglinear Models with Constraints under Product-multinomial Sampling
2013年
The loglinear model under product-multinomial sampling with constraints is considered. The asymptotic expansion and normality of the restricted minimum C-divergence estimator (RMDE) which is a generalization of the maximum likelihood estimator is presented. Then various statistics based on C-divergence and RMCDE are used to test various hypothesis test problems under the model considered. These statistics contain the classical loglikelihood ratio test statistics and Pearson chi-squared test statistics. Ia the last section, a simulation study is implemented.
Ying-hua JINYao-hua Wu
Jackknifed random weighting for Cox proportional hazards model
2012年
The Cox proportional hazards model is the most used statistical model in the analysis of survival time data.Recently,a random weighting method was proposed to approximate the distribution of the maximum partial likelihood estimate for the regression coefficient in the Cox model.This method was shown not as sensitive to heavy censoring as the bootstrap method in simulation studies but it may not be second-order accurate as was shown for the bootstrap approximation.In this paper,we propose an alternative random weighting method based on one-step linear jackknife pseudo values and prove the second accuracy of the proposed method.Monte Carlo simulations are also performed to evaluate the proposed method for fixed sample sizes.
LI Xiao 1 ,WU YaoHua 2,& TU DongSheng 1 1 Cancer Research Institute,Queen’s University,Kingston,Ontario K 7L 3N6,Canada
关键词:JACKKNIFE
删失回归模型中SCAD型变量选择与估计(英文)被引量:4
2013年
删失回归模型是一种很重要的响应变量受限制的模型,它广泛应用于计量经济学中.基于SCAD罚函数,提出了SCAD型罚变量选择方法.该方法可选出重要的回归变量,即真参数中非零系数,同时给出非零参数相合估计.另外,证明了变量选择方法是相合的,具有oracle性质.最后,进行数值模拟计算说明所提出方法的效果。
刘显慧王占锋吴耀华
关键词:删失回归模型
序集抽样中M估计分布的随机加权逼近
2009年
序集抽样是一种适用于准确测量花费太高而排序费用可以忽略不记时的一种抽样方法.讨论了序集抽样下的对于一般分布族M估计的相合性和渐近正态性并且通过随机加权的方法来估计M估计的分布.
吴耀华刘驰宇
关键词:M估计随机加权渐近正态性
基于φ-散度的乘积多项抽样下对数线性模型的检验水平和功效(英文)被引量:1
2009年
考虑了乘积多项抽样下的对数线性模型.在这个模型下,文献[Jin Y H,Wu Y H.Mini mumφ-divergence esti mator and hierarchical testing in log-linear models under product-multinomial sampling.Journal of Statistical Planning and Inference,2009,139:3 488-3 500]用基于-散度和最小-散度估计构造的统计量研究了几类假设检验问题,这其中就有嵌套假设.最小-散度估计是极大似然估计的推广.在上述文献的基础上,给出了其中一类检验的功效函数的渐近逼近公式;另外,还研究了在一列近邻假设下检验统计量的渐近分布.通过模拟研究发现,与Pearson型统计量和对数极大似然比统计量相比,Cressie-Read型检验统计量有差不多的甚至更好的模拟功效和水平.
金应华吴耀华
Empirical Likelihood-Based Subset Selection for Partially Linear Autoregressive Models被引量:1
2013年
Based on the empirical likelihood method, the subset selection and hypothesis test for parameters in a partially linear autoregressive model are investigated. We show that the empirical log-likelihood ratio at the true parameters converges to the standard chi-square distribution. We then present the definitions of the empirical likelihood-based Bayes information criteria (EBIC) and Akaike information criteria (EAIC). The results show that EBIC is consistent at selecting subset variables while EAIC is not. Simulation studies demonstrate that the proposed empirical likelihood confidence regions have better coverage probabilities than the least square method, while EBIC has a higher chance to select the true model than EAIC.
Yu HANYing-hua JINMin CHEN
Nonlinear Least Squares Estimation of Log-ACD Models被引量:1
2018年
This paper studies a nonlinear least squares estimation method for the logarithmic autoregressive conditional duration(Log-ACD) model. We establish the strong consistency and asymptotic normality for our estimator under weak moment conditions suitable for applications involving heavy-tailed distributions. We also discuss inference for the Log-ACD model and Log-ACD models with exogenous variables. Our results can be easily translated to study Log-GARCH models. Both simulation study and real data analysis are conducted to show the usefulness of our results.
Zhao CHENWei LIUChristina Dan WANGWu-qing WUYao-hua WU
共1页<1>
聚类工具0