您的位置: 专家智库 > >

国家自然科学基金(61105100)

作品数:2 被引量:33H指数:2
相关作者:李彩虹宋勇李贻斌更多>>
相关机构:山东大学威海分校山东理工大学山东大学更多>>
发文基金:国家自然科学基金更多>>
相关领域:自动化与计算机技术更多>>

文献类型

  • 2篇中文期刊文章

领域

  • 2篇自动化与计算...

主题

  • 1篇移动机器人
  • 1篇移动机器人路...
  • 1篇人工势能场
  • 1篇路径规划
  • 1篇机器人
  • 1篇机器人路径
  • 1篇机器人路径规...
  • 1篇PATH_P...
  • 1篇Q值
  • 1篇REINFO...
  • 1篇STAT
  • 1篇HAI
  • 1篇初始化
  • 1篇Q-LEAR...
  • 1篇SEQUEN...

机构

  • 1篇山东大学
  • 1篇山东理工大学
  • 1篇山东大学威海...

作者

  • 1篇李贻斌
  • 1篇宋勇
  • 1篇李彩虹

传媒

  • 1篇控制理论与应...
  • 1篇Journa...

年份

  • 1篇2013
  • 1篇2012
2 条 记 录,以下是 1-2
排序方式:
State-chain sequential feedback reinforcement learning for path planning of autonomous mobile robots被引量:5
2013年
This paper deals with a new approach based on Q-learning for solving the problem of mobile robot path planning in complex unknown static environments.As a computational approach to learning through interaction with the environment,reinforcement learning algorithms have been widely used for intelligent robot control,especially in the field of autonomous mobile robots.However,the learning process is slow and cumbersome.For practical applications,rapid rates of convergence are required.Aiming at the problem of slow convergence and long learning time for Q-learning based mobile robot path planning,a state-chain sequential feedback Q-learning algorithm is proposed for quickly searching for the optimal path of mobile robots in complex unknown static environments.The state chain is built during the searching process.After one action is chosen and the reward is received,the Q-values of the state-action pairs on the previously built state chain are sequentially updated with one-step Q-learning.With the increasing number of Q-values updated after one action,the number of actual steps for convergence decreases and thus,the learning time decreases,where a step is a state transition.Extensive simulations validate the efficiency of the newly proposed approach for mobile robot path planning in complex environments.The results show that the new approach has a high convergence speed and that the robot can find the collision-free optimal path in complex unknown static environments with much shorter time,compared with the one-step Q-learning algorithm and the Q(λ)-learning algorithm.
Xin MAYa XUGuo-qiang SUNLi-xia DENGYi-bin LI
关键词:Q-LEARNING
移动机器人路径规划强化学习的初始化被引量:28
2012年
针对现有机器人路径规划强化学习算法收敛速度慢的问题,提出了一种基于人工势能场的移动机器人强化学习初始化方法.将机器人工作环境虚拟化为一个人工势能场,利用先验知识确定场中每点的势能值,它代表最优策略可获得的最大累积回报.例如障碍物区域势能值为零,目标点的势能值为全局最大.然后定义Q初始值为当前点的立即回报加上后继点的最大折算累积回报.改进算法通过Q值初始化,使得学习过程收敛速度更快,收敛过程更稳定.最后利用机器人在栅格地图中的路径对所提出的改进算法进行验证,结果表明该方法提高了初始阶段的学习效率,改善了算法性能.
宋勇李贻斌李彩虹
关键词:移动机器人人工势能场路径规划
共1页<1>
聚类工具0