The modelling and simulation of deformable objects is a challenging topic in the field of haptic rendering between human and virtual environment.In this paper,a novel and efficient layered rhombus-chain-connected haptic deformation model based on physics is proposed for an excellent haptic rendering.During the modelling,the accumulation of relative displacements in every chain structure unit in each layer is equal to the deformation on the virtual object surface,and the resultant force of corresponding springs is equivalent to the external force.The layered rhombus-chain-connected model is convenient and fast to calculate,and can satisfy real-time requirement due to its simple nature.Simulation experiments in virtual human liver based on the proposed model are conducted,and the results demonstrate that our model provides stable and realistic haptic feeling in real time.Meanwhile,the display result is vivid.
To improve the accuracy and interactivity of soft tissue delormatlon simulation, a new plate spring model based on physics is proposed. The model is parameterized and thus can be adapted to simulate different organs. Different soft tissues are modeled by changing the width, number of pieces, thickness, and length of a single plate spring. In this paper, the structural design, calcula- tion of soft tissue deformation and real-time feedback operations of our system are also introduced. To evaluate the feasibility of the system and validate the model, an experimental system of haptic in- teraction, in which users can use virtual hands to pull virtual brain tissues, is built using PHANTOM OMNI devices. Experimental results show that the proposed system is stable, accurate and promising for modeling instantaneous soft tissue deformation.