We consider the annihilation process of an electron-positron pair into a pair of heavier fermions when the initial electron and positron beams are polarized. By calculating the polarization of the final-state particles, we discuss in detail the effect due to the produced particle masses in the T-charm energy region at BEPC/BES, and also compare the effect with that at the B-factory. Such a study is useful for the design of possible polarization investigation at the BEPC/BES facility and the B-factory.
The Majorana neutrino mass matrix combines information from the neutrino masses and the leptonic mixing in the flavor basis. Its invariance under some transformation matrices indicates the existence of certain residual symmetry. We offer an intuitive display of the structure of the Majorana neutrino mass matrix, using the whole set of the oscillation data. The structure is revealed depending on the lightest neutrino mass. We find that there are three regions with distinct characteristics of structure. A group effect and the μ-T exchange symmetry are observed. Six types of texture non-zeros are shown. Implications for flavor models are discussed.
The non-uniformity effect of the inter-foil distance has been studied using a gaseous electron multiplication(GEM) detector with sensitive area of 50mm×50mm. A gradient of the inter-foil distance is introduced by using spacers with different heights at the two ends of the foil gap. While the cluster size and the intrinsic spatial resolution show insignificant dependence on the inter-foil distance, the gain exhibits an approximately linear dependence on the inter-foil distance. From the slope, a quantitative relationship between the change of the inter-foil distance and the change of the gain is derived, which can be used as a method to evaluate the non-uniformity of the foil gap in the application of large-area GEM detectors.