为了提高光伏发电系统最大功率点追踪(maximum power point tracking,MPPT)的效率,提出一种基于自适应位置调节的粒子群MPPT控制方法.该方法采用Tent映射对粒子位置进行初始化,通过赋予粒子反捕食的能力,自动更新粒子位置,给予速度一个较小的扰动,以解决光伏系统陷入局部最优的问题.通过MATLAB进行仿真,与传统粒子群算法(particle swarm optimization algorithm,PSO)相比,该方法在MPPT的快速性和准确性上获得了满意的性能.
为了优化利用大型光伏发电系统的阵列组件,设计了一个改进的多元结构部分遮挡光伏系统数学模型。采用一个集中的最大功率点跟踪(maximum power point tracking,MPPT)控制器,在Matlab环境下进行建模仿真,证明该多元结构的光伏系统数学模型可以优化系统结构,节约设备,降低成本。为了提高最大功率点的跟踪准确度和速度,提出了一种基于改进的粒子群优化算法(particle swarm optimization,PSO)的最大功率点跟踪方法,并进行建模仿真和实验,与扰动观察法(perturbation and observation,PO)的性能指标和输出波形图对比,验证改进的粒子群优化算法对最大功率点具有更快的跟踪速度,避免在最大功率点附近产生振荡。
为了克服光伏并网逆变系统受外界干扰和系统参数的不确定性等多种因素的干扰,以逆变器的输出滤波电容电压及其导数为状态变量,将反步法和滑模控制相结合,提出了基于反步滑模控制的光伏并网逆变器控制策略。推导了具有参数不确定和外界干扰情况下的逆变器的反馈控制律。为了获取光伏阵列的全局最大功率点(maximum power point,MPP),提出了一种基于改进粒子群优化算法(particle swarm optimization,PSO)的最大功率点跟踪(maximum power point tracking,MPPT)方法,将占空比分为两部分进行初始化,建立了光伏阵列运行功率与占空比之间的线性关系。仿真和试验结果验证了所提控制策略的有效性。