In order to estimate vehicular queue length at signalized intersections accurately and overcome the shortcomings and restrictions of existing studies especially those based on shockwave theory,a new methodology is presented for estimating vehicular queue length using data from both point detectors and probe vehicles. The methodology applies the shockwave theory to model queue evolution over time and space. Using probe vehicle locations and times as well as point detector measured traffic states,analytical formulations for calculating the maximum and minimum( residual) queue length are developed. The proposed methodology is verified using ground truth data collected from numerical experiments conducted in Shanghai,China. It is found that the methodology has a mean absolute percentage error of 17. 09%,which is reasonably effective in estimating the queue length at traffic signalized intersections. Limitations of the proposed models and algorithms are also discussed in the paper.
The automated fare collection(AFC) system,also known as the transit smart card(SC) system,has gained more and more popularity among transit agencies worldwide.Compared with the conventional manual fare collection system,an AFC system has its inherent advantages in low labor cost and high efficiency for fare collection and transaction data archival.Although it is possible to collect highly valuable data from transit SC transactions,substantial efforts and methodologies are needed for extracting such data because most AFC systems are not initially designed for data collection.This is true especially for the Beijing AFC system,where a passenger's boarding stop(origin) on a flat-rate bus is not recorded on the check-in scan.To extract passengers' origin data from recorded SC transaction information,a Markov chain based Bayesian decision tree algorithm is developed in this study.Using the time invariance property of the Markov chain,the algorithm is further optimized and simplified to have a linear computational complexity.This algorithm is verified with transit vehicles equipped with global positioning system(GPS) data loggers.Our verification results demonstrated that the proposed algorithm is effective in extracting transit passengers' origin information from SC transactions with a relatively high accuracy.Such transit origin data are highly valuable for transit system planning and route optimization.
The vehicle routing problem(VRP) is a well-known combinatorial optimization issue in transportation and logistics network systems. There exist several limitations associated with the traditional VRP. Releasing the restricted conditions of traditional VRP has become a research focus in the past few decades. The vehicle routing problem with split deliveries and pickups(VRPSPDP) is particularly proposed to release the constraints on the visiting times per customer and vehicle capacity, that is, to allow the deliveries and pickups for each customer to be simultaneously split more than once. Few studies have focused on the VRPSPDP problem. In this paper we propose a two-stage heuristic method integrating the initial heuristic algorithm and hybrid heuristic algorithm to study the VRPSPDP problem. To validate the proposed algorithm, Solomon benchmark datasets and extended Solomon benchmark datasets were modified to compare with three other popular algorithms. A total of 18 datasets were used to evaluate the effectiveness of the proposed method. The computational results indicated that the proposed algorithm is superior to these three algorithms for VRPSPDP in terms of total travel cost and average loading rate.
Yong WANGXiao-lei MAYun-teng LAOHai-yan YUYong LIU