滚动轴承退化状态识别的关键在于特征提取和模式识别,局部特征尺度分解(local characteristic-scale decomposition,LCD)方法是一种新的时频分析方法,非常适用于滚动轴承振动信号的特征提取。基于变量预测模型的模式识别(Variable predictive model based class discriminate,VPMCD)方法是一种利用特征值之间的相互关系进行分类的模式识别方法,可以用于滚动轴承的退化状态识别。将LCD、VPMCD和高斯混合模型(Gaussain mixture model,GMM)相结合,提出了基于LCD和GMM-VPMCD混合模型的滚动轴承退化状态识别方法,首先对滚动轴承全寿命数据进行LCD分解并提取分量的特征值,然后利用GMM对全寿命数据的特征值进行聚类,将全寿命数据在时域上分成若干个退化状态,最后建立VPMCD模型并对测试数据进行分类,从而实现滚动轴承的退化状态识别。实验数据的分析结果表明,基于LCD的GMM-VPMCD混合模型可以有效实现滚动轴承的退化状态识别。
为了提高有源噪声控制系统的降噪效果,提出了基于经验模态分解(empirical mode decomposition,EMD)和响度的控制系统。该系统首先采用EMD方法对噪声源进行自适应分解,并对分解后的各个固有模态函数(intrinsic mode functionI,MF)分量的响度进行计算,然后根据各个分量的响度大小进行残差滤波器的设计。与基于A计权曲线设计的残差滤波器相比,该方法所设计滤波器能更好地抑制响度较小的信号频率成分。对有源噪声控制系统的降噪效果进行了仿真,结果表明,所提出的控制系统比传统滤波-X LMS(filtered-X least mean square)方法和采用基于A计权残差滤波器的系统降噪效果更好。
提出一种基于拉普拉斯特征映射流形学习算法(Laplacian Eigenmaps,简称LE)和改进多变量预测模型(Variable predictive model based class discriminate,简称VPMCD)的滚动轴承故障诊断方法,首先对振动信号进行局部特征尺度分解(Local characteristic scale decomposition,简称LCD),并提取各内禀尺度分量(Intrinsic scale component,简称ISC)的特征构造高维特征向量,接着采用LE算法挖掘出高维数据中包含有效信息且具有内在规律性的低维特征,然后输入到基于Kriging的改进多变量预测模型(Kriging-variable predictive model based class discriminate,简称KVPMCD)分类器中进行模式识别。该方法充分利用并有效结合了LCD在信号处理、LE在挖掘特征信息和KVPMCD在模式识别方面的优势,实现了滚动轴承故障特征提取到故障识别的全程诊断。实验分析结果表明:基于LE算法和KVPMCD的分类方法可以有效地对滚动轴承的工作状态和故障类型进行识别。