移动互联网、社交媒体的快速发展,极大推动了各个领域对文本、图像、视频等网络媒体数据处理的需求.该类数据具有高维度、动态更新、内容复杂的特性,增加了特征计算以及分类难度.同时,当前网络媒体数据的特征选择方法主要针对静态数据,并且对数据格式规范性要求较高.针对上述问题,为保证对动态网络媒体数据的实时特征提取,该文提出了一种基于用户相关性的动态网络媒体数据无监督特征选择算法(Unsupervised Feature Selection Algorithm for Dynamic Network Media Based on User Correlation,UFSDUC).首先,对社交网络中的交互用户进行关系分析,作为无监督特征选择的约束条件.然后,利用拉普拉斯算子构建用户相关性的特征选择模型,量化相关用户之间的关系强弱,通过拉格朗日乘子法给出特征模型中最优用户关系的数学方法.最后,基于梯度下降法设定动态网络媒体数据的阈值,用以计算非零特征权值来更新最优特征子集,达到对网络媒体数据进行有效分类的目的.该算法可在保证用户在相关性完整的基础上对动态网络媒体数据进行准确、实时的特征选择.该文采用3个标准网络媒体数据集,同时与5种目前较为流行的同类型算法进行对比以验证算法的有效性.
针对MOOC(Massive Open Online Course)平台上同类及相似课程繁杂,在线学习者不易找到适合自己的课程,而导致学习效率降低,学习效果较差等问题,提出一种IRS课程评价方法,对在线课程进行相关的评价。结合用户偏好及IRS方法改进了机器学习框架Apache-Mahout的协同过滤推荐算法,对在线学习者进行个性化课程推荐。面对MOOC平台上大量的课程信息及学习者信息,基于Hadoop分布式云计算平台,设计了在线课程推荐并行算法。实验结果表明,提出的IRS推荐算法有效且适用于分布式云计算环境,同时验证了该算法在分布式环境下并行计算的高效性。