This article examines a viscoelastic plate that is driven parametrically by a non-Guassian colored noise,which is simplified to an Ornstein-Uhlenbeck process based on the approximation method.To examine the moment stability property of the viscoelastic system,we use the stochastic averaging method,Girsanov theorem and Feynmann-Kac formula to derive the approximate analytic expansion of the moment Lyapunov exponent.Furthermore,the Monte Carlo simulation results for the original system are given to check the accuracy of the approximate analytic results.At the end of this paper,results are presented to show some quantitative pictures of the effects of the system parameters,noise parameters and viscoelastic parameters on the stability of the viscoelastic plate.
研究了受非高斯色噪声参激的Van der Pol-Duffing振子在平凡解邻域内的随机稳定性。首先利用物理学中已有的经典结果,经过近似处理,将非高斯色噪声简化为Ornstein-Uhlenbeck过程,然后通过尺度变换和线性随机变换得到了与系统响应的矩Lyapunov指数相关的特征方程,通过摄动法求得了矩Lyapunov指数、稳定指标、最大Lyapunov指数的二阶近似解,给出了系统响应p阶矩渐进稳定和几乎肯定渐进稳定的条件。最后通过对数值结果的分析,讨论了噪声参数及系统参数对系统响应矩稳定性的影响。
In the present paper, the moment Lyapunov exponent of a codimensional two-bifurcation system is evaluted, which is on a three-dimensional central manifold and subjected to a parametric excitation by the bounded noise. Based on the theory of random dynamics, the eigenvalue problem governing the moment Lyapunov exponent is established. With a singular perturbation method, the explicit asymptotic expressions and numerical results of the second^order weak noise expansions of the moment Lyapunov are obtained in two cases. Then, the effects of the bounded noise and the parameters of the system on the moment Lyapunov exponent and the stability index are investigated. It is found that the stochastic stability of the system can be strengthened by the bounded noise.
In the present paper, the maximal Lyapunov ex- ponent is investigated for a co-dimension two bifurcation system that is on a three-dimensional central manifold and subjected to parametric excitation by a bounded noise. By using a perturbation method, the expressions of the invari- ant measure of a one-dimensional phase diffusion process are obtained for three cases, in which different forms of the matrix B, that is included in the noise excitation term, are assumed and then, as a result, all the three kinds of singular boundaries for one-dimensional phase diffusion process are analyzed. Via Monte-Carlo simulation, we find that the an- alytical expressions of the invariant measures meet well the numerical ones. And furthermore, the P-bifurcation behav- iors are investigated for the one-dimensional phase diffusion process. Finally, for the three cases of singular botmdaries for one-dimensional phase diffusion process, analytical ex- pressions of the maximal Lyapunov exponent are presented for the stochastic bifurcation system.