The accuracy of an ultrasonic flowmeter meaurement depends on the profile-linear average velocity. But this velocity in the transition region is not available at the present. In this article, the velocity in the transition region in pipes is studied by experimental methods. The Particle Image Velocimetry ( PIV ) is used to measure the flow field in the transition region in pipes, and the measured results from PIV are in good agreement with the Westerwell's experimental data. Based on the experimental data of PIV, the curves of the profile-linear average velocity in the transition region against the Reynolds number in the range from 2 000 to 20 000 are obtained, and it is shown that the coefficient k is constant when the Reynolds number is in the range of 2 000-2 400 and 6 000-20 000, and the coefficient k is increasing when the Reynolds number is in the range of 2 400-6 000. The results of this article can be used to improve the measurement accuracy of the ultrasonic flowmeters and as a theoretical basis for the research on the transition flow.
LIU Yong-hui DU Guang-sheng LIU Li-ping SHAO Zhu-feng ZHAI Cheng-yuan
The wind-induced vibration of the front windshield concerns the traffic safety and the aerodynamic characteristics of cars. In this paper, the numerical simulation and the experiment are combined to study the wind-induced vibrations of the front windshield at different speeds of a van-body model bus. The Fluid-Structure Interaction (FSI) model is used for the finite element analysis of the vibration characteristics of the front windshield glass in the travelling process, and the wind-induced vibration response characteristics of the glass is obtained. A wind-tunnel experiment with an eddy current displacement sensor is carried out to study the deformation of the windshield at different wind speeds, and to verify the numerical simulation results. It is shown that the windshield of the model bus windshield undergoes a noticeable deformation as the speed changes, and from the deformation curve obtained, it is seen that in the accelerating process, the deformation of the glass increases as the speed increases, and with the speed being stablized, it also tends to a certain value. The results of this study can provide a scientific basis for the safety design of the windshield and the body.
TAO Li-liDU Guang-shengLIU Li-pingLIU Yong-huiSHAO Zhu-feng
The measurement accuracy of an ultrasonic heat meter depends on the relationship of the profile-linear average velocity.There are various methods for the calculation of the laminar and turbulence flow regions,but few methods for the transition region.At present,the traditional method to deal with the transition region is to adopt the relationship for the turbulent flow region.In this article,a simplified model of the pipe is used to study the characteristics of the transition flow with specific Reynolds number.The k-εmodel and the Large Eddy Simulation(LES)model are,respectively,used to calculate the flow field of the transition region,and a comparison with the experiment results shows that the LES model is more effective than the k-εmodel,it is also shown that there will be a large error if the relationship based on the turbulence flow is used to calculate the profile-linear average velocity relationship of the transition flow.The profile-linear average velocity for the Reynolds number ranging from 5 300 to 10 000 are calculated,and the relationship curve is obtained.The results of this article can be used to improve the measurement accuracy of ultrasonic heat meter and provide a theoretical basis for the research of the whole transition flow.