Global climate change has been evident in many places worldwide. This study provxdes a better understanding of the variability and changes in frequency, intensity, and duration of temperature, precipitation, and climate extremes in the Extensive Hexi Region, based on meteorological data from 26 stations. The analysis of average, maximum, and minimum temperatures revealed that statistically significant warming occurred from 1960 to 2011. All temperature extremes dis- played trends consistent with warming, with the exception of coldest-night temperature (TNn) and coldest-day tempera- ture (TXn), which were particularly evident in high-altitude areas and at night. Amount of precipitation and number of rainy days slowly increased with no significant regional trends, mainly occurring in the Qilian Mountains and Hexi Cor- ridor. The significance of changes in precipitation extremes during 1960-2011 was high, hut the regional trends of max- imum 5-day precipitation (RX5day), the average precipitation on wet days (SDII), and consecutive wet days (CWD) were not significant. The variations in the studied parameters indicate an increase in both the extremity and strength of precip- itation events, particularly in higher-altitude regions. Furthermore, the contribution from very wet precipitation (R95) and extremely wet precipitation (R99) to total precipitation also increased between 1960 and 2011. The assessment of these changes in temperature and precipitation may help in developing better management practices for water resources. Future studies in the region should focus on the impact of these changes on runoffs and glaciers.
Variations and trends in extreme climate events are more sensitive to climate change than the mean values, and so have received much attention. In this study, twelve indices of temperature extremes and 11 indices of precipita- tion extremes at 32 meteorological stations in Hengduan Mountains were examined for the period 1961-2008. The re- suits reveal statistically significant increases in the temperature of the warmest and coldest nights and in the frequen- cies of extreme warm days and nights. Decreases of the diurnal temperature range and the numbers of frost days and ice days are statistically significant. Regional averages of growing season length also display the trends consistent and significant with warming. At a large proportion of the stations, patterns of temperature extremes are consistent with warming since 1961: warming trends in minimum temperature indices are greater than those relating to maximum temperature. As the center of the Shaluli Mountain, the warming magnitudes decrease from inner to outer. Changes in precipitation extremes is low: trends are difficult to detect against the larger inter-annual and decadal-scale variability of precipitation, and only the wet day precipitation and the regional trend in consecutive dry days are significant at the 0.05 level. It can be concluded that the variation of extreme precipitation events is not obvious in the Hengduan Mountains, however, the regional trends generally decrease from the south to the north. Overall, the spatial distribution of temporal changes of all extreme climate indices in the Hengduan Mountains illustrated here reflects the climatic complexity in mountainous regions.