This work aimed at studying the feasibility of calculating the coal-oxygen diffusion properties during the low temperature oxidation process of lignite so as to predict its spontaneous combustion process. Coal samples were oxidized in air ambient under different temperatures. Scanning Electron Microscope was used to indicate the surface morphology changes of oxidization. Then, based on fractal theory and flow characteristics, the ffactal dimension of gas diffusion in the pore ways was calculated under different temperature. Considering pore size distribution, connectivity distribution and Fick diffusion mechanisms, the relationship between the gas diffusivity change with pore area ffactal dimension and porosity was investigated, and multiple linear equation of the coal- oxygen diffusion coefficients and pore parameters was obtained. Comparison between the experimental data and model prediction verifies the validiW of the model. The research provides a theoretical basis for the prediction model of coal-oxygen diffusion law.
CeO_2–CaO–Pd/HZSM-5 catalyst was prepared for the dimethyl ether(DME) one-step synthesis in a continuous fixed-bed micro-reactor from the sulfur-containing syngas. The catalytic stability over hybrid catalyst of CeO_2–CaO–Pd/HZSM-5 was investigated to ensure that the kinetics experimental results were not significantly influenced by induction period and catalytic deactivation. A large number of kinetic data points(40 sets) were obtained over a range of temperature(240–300 °C), pressure(3–4 MPa), gas hourly space velocity(GHSV)(2000–3000 L·kg^(-1)·h^(-1)) and H_2/CO mole ratio(2–3). Kinetic model for the methanol synthesis reaction and the dehydration of methanol were obtained separately according to reaction mechanism and Langmuir–Hinshelwood mechanism. Regression parameters were investigated by the method combining the simplex method and Runge–Kutta method. The model calculations were in appropriate accordance with the experimental data.
Ruizhi ChuWenxin HouXianliang MengTingting XuZhenyong MiaoGuoguang WuLei Bai