This paper addresses an improved distributed model predictive control (DMPC) scheme for multiagent systems with an attempt to improving its consistency. The deviation between what an agent is actually doing and what its neighbors believe that agent is doing is penalized in the cost function of each agent. At each sampling instant the compatibility constraint of each agent is set tighter than the previous sampling instant. Like the traditional approach, the performance cost is utilized as the Lyapunov function to prove closed-looped stability. The closed-loop stability is guaranteed if the weight matrix for deviation in the cost function are sufficiently large. The proposed distributed control scheme is formulated as quadratic programming with quadratic constraints. A numerical example is given to illustrate the effectiveness of the proposed scheme.
This paper is mainly concerned with the model predictive control (MPC) of networked control systems (NCSs) with uncertain time delay and data packets disorder. The network-induced time delay is described as bounded and arbitrary process. For the usual state feedback controller, by considering all the possibilities of delays, an augmented state space model of the closed-loop system, which characterizes all the delay cases, is obtained. The stability conditions are given according to the Lyapunov method based on this augmented model. The stability property is inherited in MPC which explicitly considers the physical constraints. A numerical example is given to demonstrate the effectiveness of the proposed MPC.