A generalized nonlinear Baker failure criterion is employed with the upper bound limit analysis to study the surrounding rock stability of underground cavities. A three-dimensional(3D) failure mode is established by extending the two-dimensional(2D) failure mode, which offers an upper bound expression of the surrounding rock pressure. This method is validated with a series of examples before the influence of four parameters of scale parameter, curvature parameter, shift parameter and lateral pressure coefficient, on the surrounding rock pressure is analyzed. According to these results, failure ranges of the underground cavities are determined. The following conclusions are reached:(1) the proposed approach is more accurate to predict surrounding rock pressure than the Mohr-Coulomb failure criterion;(2) the surrounding rock with large scale parameter, curvature parameter, shift parameter, and lateral pressure coefficient can lead to a more stable underground cavity;(3) the failure range in 3D mode can be predicted according to the upper bound solutions.
Zhi-zhen LIUPing CAOHang LINJing-jing MENGYi-xian WANG
When subjected to shear loading condition,a steel rock bolt will become bent in the field close to the loading point in situ.The bolt is deformed as the joint displacement increases,which can mobilize a normal load and a shear load on the bolt accordingly.In this work,the relationship analysis between the displacing angle and loading angle is carried out.By considering elastic andplastic states of rock bolt during shearing,the rotation of bolt extremity can be calculated analytically.Thus,the loading angle isobtained from displacing angle.The verification of analytical results and laboratory results from reference research implies that theanalytical method is correct and working.In terms of in-situ condition,the direction of the load acting on steel bolt can be predictedwell according to the direction of the deformed rock bolt with respect to original bolt axis.