您的位置: 专家智库 > >

国家自然科学基金(60874098)

作品数:1 被引量:0H指数:0
发文基金:国家自然科学基金更多>>
相关领域:医药卫生自动化与计算机技术更多>>

文献类型

  • 1篇期刊文章
  • 1篇会议论文

领域

  • 2篇医药卫生
  • 1篇自动化与计算...

主题

  • 1篇支持向量
  • 1篇支持向量机
  • 1篇神经网
  • 1篇神经网络
  • 1篇缺氧
  • 1篇向量
  • 1篇向量机
  • 1篇脑电
  • 1篇脑电分析
  • 1篇混沌神经网络
  • 1篇高空缺氧
  • 1篇PATTER...
  • 1篇STRUCT...
  • 1篇STRUCT...
  • 1篇AMPLIT...
  • 1篇EEG
  • 1篇FRAMES

机构

  • 1篇浙江大学
  • 1篇美国加州大学
  • 1篇杭州展望科技...
  • 1篇中国人民解放...

传媒

  • 1篇Journa...

年份

  • 2篇2009
1 条 记 录,以下是 1-2
排序方式:
Detecting stable phase structures in EEG signals to classify brain activity amplitude patterns
2009年
Obtaining an electrocorticograms(ECoG)signal requires an invasive procedure in which brain activity is recorded from the cortical surface.In contrast,obtaining electroencephalograms(EEG)recordings requires the non-invasive procedure of recording the brain activity from the scalp surface,which allows EEG recordings to be performed more easily on healthy humans.In this work,a technique previously used to study spatial-temporal patterns of brain activity on animal ECoG was adapted for use on EEG.The main issues are centered on solving the problems introduced by the increment on the interelectrode distance and the procedure to detect stable frames.The results showed that spatial patterns of beta and gamma activity can also be extracted from the EEG signal by using stable frames as time markers for feature extraction.This adapted technique makes it possible to take advantage of the cognitive and phenomenological awareness of a normal healthy subject.
Yusely RUIZGuang LIWalter J.FREEMANEduardo GONZALEZ
关键词:FRAMES
基于混沌神经网络和支持向量机的7500米高空缺氧脑电分析
<正>利用支持向量机对现有的一种混沌神经网络(KⅢ模型)进行了改进,并应用到基于脑电技术的高空缺氧检测研究中。采用小波包分解对采集的所有通道的脑电信号进行预处理,并且提取空间特征向量。利用支持向量机改进了KⅢ模型中原有的...
胡萌李交杰郑远哲缪育平Walter J.Freeman胡萌
关键词:混沌神经网络支持向量机脑电分析缺氧
文献传递
共1页<1>
聚类工具0