Dual fluorescence and UV absorption of 2′-ethylhexyl 4-(N,N-dimethylamino)benzoate (EHDMAB) were investigated in cationic, non-ionic and anionic micelles. When EHDMAB was solubilized in different micelles, the UV absorption of EHDMAB was enhanced. Twisted intramolecular charge transfer (TICT) emission with longer wavelength was observed in ionic micelles, whereas TICT emission with shorter wavelength was obtained in non-ionic micelles. In particular, dual fluorescence of EHDMAB was significantly quenched by the positively charged pyridinium ions arranged in the Stern layer of cationic micelles. UV radiation absorbed mainly decays via TICT emission and radiationless deactivation. The dimethylamino group of EHDMAB experiences different polar environments in ionic and non-ionic micelles according to the polarity dependence of TICT emission of EHDMAB in organic solvents. In terms of the molecular structures and sizes of EHDMAB and surfactants, each individual EHDMAB molecule should be buried in micelles with its dimethylamino group toward the polar head groups of different micelles and with its 2′-ethylhexyl chain toward the hydrophobic micellar core. Dynamic fluorescence quenching measurements of EHDMAB provide further support for the location of EHDMAB in different micelles.