Chiral organic-inorganic hybrid silicas can be prepared via the self-assemblies of chiral surfactants and gelators as templates.However,the relationship between the chirality of the hybrid silica and the structure of the surfactant/gelator has not been systemically studied.Herein,a series of chiral low-molecular-weight amphiphiles(LMWAs) derived from L-valine was synthesized.Their alkyl chains were n-butadecyl,n-hexadecyl and n-octadecyl,respectively.They can form viscous liquids in pure water,and physical gels in tetrahydrofuran,cyclohexanone,acetonitrile,acetone,chlorobenzene and nitrobenzene.Chiral 1,4-phenylene-silicas were prepared via the self-assemblies of these LMWAs as templates.With increasing the alkyl chain length,the 1,4-phenylene-silicas changed from short mesoporous nanorods to long nanotubes.The circular dichroism spectra of the 1,4-phenylene-silicas indicated that the long nanotubes exhibit the strongest chirality.
XIAO MinLIU Xiao-juanHU KaiWU Li-minLI YiLI Bao-zongYANG Yong-gang
Single-handed helical silica nanotubes were prepared according to the literature procedures,using the self-assemblies of a pair of chiral cationic low-molecular-weight gelators as the templates.A chirality indicator,4,4'-bis(triethoxysilyl)-1,1'-biphenyl,was developed to determine the chirality of the silica nanotubes.The chirality of the surfaces and the bulky walls of the silica nanotubes were understood from the twist of the biphenylene rings.