This study aims to investigate the protective roles of photosynthetic characteristics and antioxidative systems in the desiccation tolerance of Sophora moorcroftiana and Caragana maximovicziana as they adapt to arid environments. A variety of physiological and biochemical parameters in the leaves of two Leguminosae species were monitored for 1, 7, 14, 21 and 28 d of drought stress. Soil water content decreased from 38.58% to 7.33% after exposure to 28 d of water stress. The photosynthetic carbon-assimilation rates of the two Leguminosae plants decreased for non-stomatal limitation with processing water stress. The malondialdehyde content and cell membrane relative conductivity of the two species increased significantly from 1 to 21 d and then decreased. S. moorcroftiana showed higher superoxide dismutase and peroxidase activities than C. maximovicziana during the 28 d treatment period. However, the catalase activities and proline content of C. maximovicziana were higher than those of S. moorcroftiana before the water stress treatment reached 21 d. Nine physiological and biochemical parameters were selected to comprehensively evaluate the two species' drought-resistance by the membership function values(MFV). The mean MFV indicated that S. moorcroftiana has a relatively stronger drought defense capability than C. maximovicziana. S. moorcroftiana mainly uses carbon-assimilation rate and osmotic adjustment to combat water deficiency.
Sophora moorcroftiana is an endemic, droughtresistant shrub that grows in Tibet and has some degree of resistance to salt, cold, heat, and drought. In the present study, four dehydration responsive element-binding(DREB) genes(Sm DREB1, Sm DREB2, Sm DREB and Sm DREB1) were isolated from S. moorcroftiana for the first time and their expression and proline content under abiotic stress were analyzed. Proline accumulated in seedlings under drought, salt, cold, and heat stress treatments. The four genes were variously expressed in response to the four abiotic stresses. Sm DREB1 was induced by drought, cold, and heat stresses; Sm DREB2 and Sm DREB4 were both induced by salt, cold, and heat stresses, whereas Sm DREB3 was induced by drought and heat stresses. Thus, these four genes may participate in conferring tolerance to these four abiotic stresses and are candidate genes for genetic engineering in the future.