Based on domestic-developed triaxial servo-controlled seepage equipment for thermal-hydrologicalmechanical coupling of coal containing methane,an experimental study was carried out to investigate mechanical property and gas permeability of raw coal,under the situation of conventional triaxial compression and unloading confining pressure tests in different gas pressure conditions.Triaxial unloading confining pressure process was reducing confining pressure while increasing axial pressure.The research results show that,compared with the peak intensity of conventional triaxial loading,the ultimate strength of coal samples of triaxial unloading confining pressure was lower,deformation under loading was far less than unloading,dilation caused by unloading was more obvious than loading.The change trend of volumetric strain would embody change of gas permeability of coal,the permeability first reduced along with volumetric strain increase,and then raised with volume strain decrease,furthermore,the change trends of permeability of coal before and after destruction were different in the stage of decreasing volume strain due to the effect of gas pressure.When gas pressure was greater,the effective confining pressure was smaller,and the radial deformation produced by unloading was greater.When the unloading failed confining pressure difference was smaller,coal would be easier to get unstable failure.
Henan Pingdingshan No.10 mine is prone to both coal and gas outbursts.The E_(9-10)coal seam is the main coal-producing seam but has poor quality ventilation,thus making it relatively difficult for gas extraction.The F_(15)coal seam,at its lower section,is not prone to coal and gas outbursts.The average seam separation distance of 150 m is greater than the upper limit for underside protective seam mining.Based on borehole imaging technology for field exploration of coal and rock fracture characteristics and discrete element numerical simulation,we have studied the evolution laws and distribution characteristics of the coal and rock fissure field between these two coal seams.By analysis of the influential effect of group F coal mining on the E_(9-10)coal seam,we have shown that a number of small fissures also develop in the area some 150 m above the overlying strata.The width and number of the fissures also increase with the extent of mining activity.Most of the fissures develop at a low angle or even parallel to the strata.The results show that the mining of the F_(15)coal seam has the effect of improving the permeability of the E_(9-10)coal seam.