图像去噪作为图像处理过程一个重要的环节,直接影响图像进一步处理的效果.在图像去噪方法中,基于稀疏表示的K-means singular value decomposition(K-SVD)方法通过将图像表示成训练字典和稀疏系数两部分来有效分离噪声以达到去噪目的,具有很好的去噪效果.然而该算法包含了复杂矩阵运算,因而去噪速度较慢.本文提出的快速的K-SVD(SK-SVD)算法综合了均值滤波的速度快及K-SVD方法对图像细节处理好的优势,将噪声图像分为背景块集与内容块集两部分,对背景块集采用均值滤波方法去噪,内容块集用K-SVD算法去噪.为达到更高的去噪精度,首先对内容块集进行聚类,再对每一类分别训练稀疏字典去噪.实验结果表明,该算法在去除噪声时不但能很好地保留图像的细节,去噪效率也有显著的提高.
粒度支持向量机(granular support vector machine,简称GSVM)可以有效提高支持向量机(support vector machine,简称SVM)的学习效率,但由于经典GSVM通常将粒用个别样本替代,且粒划和学习在不同空间进行,因而不可避免地改变了原始数据分布,从而可能导致泛化能力降低.针对这一问题,通过引入动态层次粒划的方法,设计了动态粒度支持向量回归(dynamical granular support vector regression,简称DGSVR)模型.该方法首先将训练样本映射到高维空间,使得在低维样本空间无法直接得到的分布信息显示出来,并在该特征空间中进行初始粒划.然后,通过衡量样本粒与当前回归超平面的距离,找到含有较多回归信息的粒,并通过计算其半径和密度进行深层次的动态粒划.如此循环迭代,直到没有信息粒需要进行深层粒划时为止.最后,通过动态粒划过程得到的不同层次的粒进行回归训练,在有效压缩训练集的同时,尽可能地使含有重要信息的样本在最终训练集中保留下来.在基准函数数据集及UCI上的回归数据集上的实验结果表明,DGSVR方法能够以较快的速度完成动态粒划的过程并收敛,在保持较高训练效率的同时可有效提高传统粒度支持向量回归机(granular support vector regression machine,简称GSVR)的泛化性能.