First principles plane wave pseudopotential method was executed to calculate the mechanical properties with respect to the uranium-0.95 mass fraction of titanium (U-0.95 mass fraction of Ti) alloy for quenching and aging, including the elastic modulus, the value of shear modulus to bulk modulus (G/B) and the ideal tensile strength. The further research has also been done about the crack mechanism through Griffith rupture energy. These results show that the elastic moduli are 195.1 GPa for quenching orthorhombic ~ phase and 201.8 GPa for aging formed Guinier-Preston (G.P) zones, while G/B values are 0.67 and 0.56, respectively. With the phase change of uranium-titanium (U-Ti) alloy via the quenching treatment, the ideal tensile strength is diverse and distinct with dif- ferent crystal orientations of the anisotropic ~ phase. Comparison of quenching and short time aging treatment, both of the strength and toughness trend to improve slightly. Further analysis about electronic density of states (DOS) in the electronic scale indicates that the strength increases continuously while toughness decreases with the aging proceeding. The equilibrium structure appears in overaging process, as a result of decomposition of metastable quenching 7 phase. Thereby the strength and toughness trend to decrease slightly. Finally, the ideal fracture energies of G.P zones and overaging structure are obtained within the framework of Griffith fracture theory, which are 4.67 J/m2 and 3.83 J/m2, respectively. These results theoretically demonstrate strengthening effect of quenching and aging heat treatment on U-Ti alloy.
The microstructure,elemental distribution,phase composition,and thickness of intermetallic layers between high-strength low-alloy steel(H420)/mild carbon steel(DC51)and Al–43.4Zn–1.6Si(wt.%)(galvalume,GL)alloy were comparatively investigated.The experimental results reveal that the interfacial reaction layer was composed of Fe2Al5,Fe4Al13,and Al8Fe2Si intermetallic compounds.Moreover,the growth curves of the Fe2Al5 and Fe4Al13 intermetallic layers fit the parabolic law well,and the total thickness of the intermetallic layers of H420+GL was almost the same as that of DC51+GL.However,the thickness of the Fe2Al5 layer in H420+GL was thinner than that in DC51+GL.In addition,first-principle calculations were performed to explore the effect of Mn on the growth of the Fe2Al5 intermetallic phase,and the results indicate that Mn substitution in Fe2Al5 removes electronic charge from the Al atoms,thus decreasing the thickness of the Fe2Al5 interface layer.
The stability, bonding, work of adhesion and electronic structure of the U/W interface with and without Ti were investigated by first principles to explore the me- chanical properties of W particles enhanced U-Ti alloy matrix composite as a construction material. The calculated results indicate that the preferable orientation of the U/W interfacial structure is (001)U/(110)w crystallographic plane, Ti atoms originating from U slab are prone to diffuse into W slab through the interface, and additional Ti in U matrix is the stronger adhesion to W, with an ideal work of adhesion of 6.93 J.m-2 for U-Ti/W interface, relative to the value of 6.72 J.m-2 for clean U/W interface. The stronger adhesion performance is due to the increase in valence electron hybridization for U-Ti/W compared with U/W interface, as evidenced by the characteristic of the local density of states for the interfacial atoms.