A three-dimensional compressible flow stability model is presented in this paper, which focuses on stall inception of multi-stage axial flow compressors with a finite large radius annular duct configuration for the first time. It is shown that under some assumptions, the stability equation can be obtained yielding from a group of homogeneous equations. The stability can be judged by the non-dimensional imaginary part of the resultant complex frequency eigenvalue. Further more, based on the analysis of the unsteady phenomenon caused by casing treatment, the function of casing treatment has been modeled by a wall impedance condition which is included in the stability model through the eigenvalues and the corresponding eigenfunctions of the system. Finally, some experimental investigation and two numerical evaluation cases are conducted to validate this model and emphasis is placed on numerically studying the sensitivity of the setup of different boundary conditions on the stall inception of axial flow fan/compressors. A novel casing treatment which consists of a backchamber and a perforated plate is suggested, and it is noted that the open area ratio of the casing treatment is less than 10%, and is far smaller than conventional casing treatment with open area ratio of over 50%, which could result in stall margin improvement without obvious efficiency loss of fan/compressors.
This study is aimed at using blade 3-D optimization to control corner flows in the high through-flow fan/booster of a high bypass ratio commercial turbofan engine. Two kinds of blade 3-D optimization, end-bending and bow, are focused on. On account of the respective operation mode and environment, the approach to 3-D aerodynamic modeling of rotor blades is different from stator vanes. Based on the understanding of the mechanism of the corner flow and the consideration of intensity problem for rotors, this paper uses a variety of blade 3-D optimization approaches, such as loading distribution optimization, perturbation of departure angles and stacking-axis manipulation, which are suitable for rotors and stators respectively. The obtained 3-D blades and vanes can improve the corner flow features by end-bending and bow effects. The results of this study show that flows in corners of the fan/booster, such as the fan hub region, the tip and hub of the vanes of the booster, are very complex and dominated by 3-D effects. The secondary flows there are found to have a strong detrimental effect on the compressor performance. The effects of both end-bending and bow can improve the flow separation in corners, but the specific ways they work and application scope are somewhat different. Redesigning the blades via blade 3-D optimization to control the corner flow has effectively reduced the loss generation and improved the stall margin by a large amount.
Blood pumps have been adopted to treat heart failure over the past decades. A novel blood pump adopting the rotor with splitter blades and tandem cascade stator was developed recently. A particle image velocimetry (P1V) experiment was carried out to verify the design of the blood pump based on computational fluid dynamics (CFD) and further analyze the flow properties in the rotor and stator. The original sized pump model with an acrylic housing and an experiment loop were constructed to perform the optical measurement. The PIV testing was carried out at the rotational speed of 6952±50 r/rain with the flow rate of 3.1 l/rain and at 8186±50 r/min with 3.5 l/rain, respectively. The velocity and the Reynolds shear stress distributions were investigated by PIV and CFD, and the comparisons between them will be helpful for the future blood pump design.
A stall inception model for transonic fan/compressors is presented in this paper. It can be shown that under some assumptions the solution of unsteady flow field consists of pressure wave which propagates upstream or downstream, vortex wave and entropy wave convected with the mean flow speed. By further using the mode-matching technique and applying the conservation law and conditions reflecting the loss characteristics of a compressor in the inlet and outlet of the rotor or stator blade rows, a group of homogeneous equations can be obtained from which the stability equation can be derived. Based on the analysis of the unsteady phenomenon caused by casing treatments, the function of casing treatments has been modeled by a wall impedance condition which has been included in the stability model through the eigenvalues and the corresponding eigenfunctions of the system. Besides, the effect of shock waves in cascade channel on the stability prediction is also considered in the stall inception model. Finally, some numerical analysis and experimental investigation are also conducted with emphasis on the mutual comparison.