A nonlinear mathematical model for the analysis of large deformation of frame structures with discontinuity conditions and initial displacements, subject to dynamic loads is formulated with arc-coordinates. The differential quadrature element method (DQEM) is then applied to discretize the nonlinear mathematical model in the spatial domain, An effective method is presented to deal with discontinuity conditions of multivariables in the application of DQEM. A set of DQEM discretization equations are obtained, which are a set of nonlinear differential-algebraic equations with singularity in the time domain. This paper also presents a method to solve nonlinear differential-algebra equations. As application, static and dynamical analyses of large deformation of frames and combined frame structures, subjected to concentrated and distributed forces, are presented. The obtained results are compared with those in the literatures. Numerical results show that the proposed method is general, and effective in dealing with disconti- nuity conditions of multi-variables and solving differential-algebraic equations. It requires only a small number of nodes and has low computation complexity with high precision and a good convergence property.
Based on the assumption of finite deformation, the Hamilton variational principle is extended to a nonlinear elastic Euler-type beam-column structure located on a nonlinear elastic foundation. The corresponding three-dimensional (3D) mathematical model for analyzing the nonlinear mechanical behaviors of structures is established, in which the effects of the rotation inertia and the nonlinearity of material and geometry are considered. As an application, the nonlinear stability and the post-buckling for a linear elastic beam with the equal cross-section located on an elastic foundation are analyzed. One end of the beam is fully fixed, and the other end is partially fixed and subjected to an axial force. A new numerical technique is proposed to calculate the trivial solution, bifurcation points, and bifurcation solutions by the shooting method and the Newton- Raphson iterative method. The first and second bifurcation points and the corresponding bifurcation solutions are calculated successfully. The effects of the foundation resistances and the inertia moments on the bifurcation points are considered.