Suzhou is one of China's most developed regions, located in the eastern part of the Yangtze Delta. Due to its location and river features, it may at a high risk of flood under the climate change background in the future. In order to investigate the flood response to the extreme scenario in this region, 1-D hydrodynamic model with real-time operations of sluices and pumps is established. The rain-runoff processes of the urban and rural areas are simulated by two lumped hydrologic models, respectively. Indicators for a quantitative assessment of the flood severity in this region are proposed. The results indicate that the existing flood control system could prevent the Suzhou Downtown from inundation in the future. The difficulty of draining the Taihu Lake floods should be given attention to avoid the flood hazard. The modelling approach based on the in-bank model and the evaluation parameters could be effective for the flood severity estimation in the plain river network catchment. The insights from this study of the possible future extreme flood events may assist the policy making and the flood control planning.
A modified large-eddy simulation model,the dynamic coherent eddy model(DCEM)is employed to simulate the generation and propagation of internal solitary waves(ISWs)of both depression and elevation type,with wave amplitudes ranging from small,medium to large scales.The simulation results agree well with the existing experimental data.The generation process of ISWs is successfully captured by the DCEM method.Shear instabilities and diapycnal mixing in the initial wave generation phase are observed.The dissipation rate is not equal at different locations of an ISW.ISW-induced velocity field is analyzed in the present study.The structure of the bottom boundary layer(BBL)of internal wave packets is found to be different from that of a single ISW.A reverse boundary jet instead of a separation bubble exists behind the leading internal wave while separation bubbles appear in other parts of the wave-induced velocity field.The boundary jet flow resulting from the adverse pressure gradients has distinctive dynamics compared with free shear jets.
The uncertainty and sensitivity of predicted positions and thicknesses of seawater-freshwater mixing zones with respect to uncertainties of saturated hydraulic conductivity, porosity, molecular diffusivity, longitudinal and transverse dispersivities were investigated in both head-control and flux-control inland boundary systems. It shows that uncertainties and sensitivities of predicted results vary in different boundary systems. With the same designed matrix of uncertain factors in simulation experiments, the variance of predicted positions and thickness in the flux-control system is much larger than that predicted in the head-control system. In a head-control system, the most sensitive factors for the predicted position of the mixing zone are inland freshwater head and transverse dispersivity. However, the predicted position of the mixing zone is more sensitive to saturated hydraulic conductivity in a flux-control system. In a head-control system, the most sensitive factors for the predicted thickness of the mixing zone include transverse dispersivity, molecular diffusivity, porosity, and longitudinal dispersivity, but the predicted thickness is more sensitive to the saturated hydraulic conductivity in a flux-control system. These findings improve our understandings for the development of seawater-freshwater mixing zone during seawater intrusion processes, and give technical support for groundwater resource management in coastal aquifers.
This paper investigates the bed shear stress based on the condition of the incipient motion of sediment in a uniform-flow flume covered with emergent rigid vegetation,which is represented by arrays of circular cylinders arranged in a regular pattern.A total of 148 tests are performed to observe the influence of the vegetation density,bed slope,flow depth and sediment size on the bed shear stress.The tests reveal that when the sediment is in incipient motion,the resistances acting on the flow passing the rigid vegetation contain the vegetation resistance and the bed shear stress.This shear stress could be divided into two parts:the grain shear stress and the shear stress caused by sand dunes,which are the deformed bedform with the sediment incipient motion.An empirical relationship between the shear stress of the sand dune and vegetation density,the Froude number,the apparent vegetation layer velocity is developed.
WANG HaoTANG HongWuYUAN SaiYuLV ShengQiZHAO XuanYu
The presence of submerged vegetation on river beds can change the water flow structure and alter the state of sediment motion. In this study, the incipient motion of sediment in the presence of submerged flexible vegetation in open channels was investigated in a laboratory experiment. The vegetation was simulated with flexible rubber cylinders arranged in parallel arrays. The effect of the vegetation density, water depth, and sediment grain size on the incipient motion was investigated. The experimental results indicate that the incipient motion velocity of sediment increases as the vegetation density decreases and the water depth and sediment grain size increase. With flexible plants, the incipient motion velocity of sediment is lower than it is without vegetation, and is larger than it is with rigid vegetation. A general incipient motion velocity equation was derived, which can be applied to both flexible and rigid vegetation conditions.