Numerical models of carotid bifurcation were constructed using a combination of tuning-fork bifurcation and straight or curved common carotid. The different inlet velocity profiles of the common carotid were generated for Bloch flow waveform and Holdsworth flow waveform, respectively. The effects of the different flow waveform for the common carotid on Wall Shear Stress (WSS) and Oscillatory Shear Index (OSI) of carotid bifurcation were studied by CFD method. The results show that the physiological flow waveform of curved common carotid has a significant effect on OSI. In particular, the OSI on the outer walls of carotid sinus and external carotid becomes higher in the inward-curved common carotid for Holdsworth flow waveform. But, in both cases of low WSS and high OSI, the effects of flow waveforms are smaller than those of the curved common carotid. The study reveals that the exact knowledge of the physiological flow waveform, vascular geometry and inlet velocity profile is important for hemodynamic numerical simulation of artery bifurcation.
The asymmetric inlet velocity profile has been observed in phantom model using LDA and in health subjects using Magnet Resonance (MR). The effects of asymmetric inlet axial velocity profile on the flow field and the Wall Shear Stress (WSS) of carotid bifurcation were numerically studied herein with the TF-AHCB model, The results show that the Wall Shear Stress Gradient (WSSG) in the front part of the sinus for inward-tilting inlet axial velocity profile is nearly 2 times of that for the symmetric one in the beginning of systole, the end of systole, and diastole, respectively. The area of WSS below 5× 10^-3 Pa at the outer wall of the sinus for outward-tilting inlet axial velocity profile is 1.5 times of that for the inward-tilting one during diastole of the cardiac cycle. The asymmetric inlet velocity profiles can reduce the flow velocity near the inner wall of the sinus, which has been normally considered a high velocity region. It is concluded that besides bifurcation geometry and flow waveform, the asymmetry of inlet velocity profile is probably a factor influencing atherosclerosis.