A novel biomaterial based on polyurethane (PU) was prepared through physical incorporation of lysine-containing copolymer to improve its hemocompatibility and surface recognition of plasminogen.The lysine-containing copolymer was synthesized via the copolymerization of 2-ethylhexyl methacrylate (EHMA),oligo (ethylene glycol)methyl ether methacrylate (OEGMA) and 6-tert-butoxycarbonyl amino-2-(2-methyl-acryloylamino)-hexanoic acid tert-butyl ester (Lys(P)MA),followed by the deprotection of COOH and ε-NH2 groups on lysine residues in the copolymer.The composition of the copolymer can be adjusted by varying the monomer feed ratio.The three components contribute to improving the compatibility with PU,resistance to nonspecific protein adsorption and specific binding of plasminogen,respectively.The binding capacity towards plasminogen increased with the lysine content in the copolymer.This approach illustrates a simple way for the generation of novel biomaterials with improved hemocompatibility and surface recognition of specific biomolecules.
A simple approach has been developed to functionalize various substrates, such as gold and polyvinylchloride, with dopamine methacrylamide—a molecule with adhesive properties that mimic those of mussels—to produce a versatile and general platform for subsequent surface modification. With active double bonds on the surface, various polymers, such as poly([2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl) ammonium hydroxide(PMEDSAH) and poly(N-vinylpyrrolidone)(PVP), can be grafted by conventional radical polymerization. Double bond surface functionalization and subsequent polymer grafting have been verified by static water contact angle, Fourier transform infrared–attenuated total reflectance(FTIR-ATR) spectroscopy and X-ray photoelectron spectroscopy(XPS) measurements. Protein adsorption assays showed that the polymermodified substrates have good protein-resistant properties. Considering the advantages of facility, versatility and substrate- independence, this method should be useful in designing functional interfaces for bioengineering applications.
A method was developed to modify silicon surfaces with good protein resistance and specific cell attachment. A silicon surface was initially deposited using a block copolymer of N-vinylpyrrolidone (NVP) and 2-hydroxyethyl methacrylate (HEMA) (PVP-b-PHEMA) film through surface-initiated atom transfer radical polymerization and then further immobilized using a short arginine-glycine-aspartate (RGD) peptide. Our results demonstrate that the RGD-modified surfaces (Si-RGD) can suppress non-specific adsorption of proteins and induce the adhesion of L929 cells. The Si-RGD surface exhibited higher cell proliferation rates than the unmodified silicon surface. This research established a simple method for the fabrication of dual-functional silicon surface that combines antifouling and cell attachment promotion.