This work evaluates the application potential of a new indigenous aerobic denitrifi er, strain Pseudomonas CW-2, isolated from a largemouth bass culture pond. The rate of ammonium-N removal by strain CW-2 was approximately 97% at a DO concentration of 5.2 mg/L. Furthermore, when nitrate and ammonia coexisted, the strain gave priority to assimilating ammonia, and thereafter to denitrifi cation. Under optimal cultivation conditions, citrate and acetate were the carbon resources, C/N was 8, dissolved oxygen was 5.2 mg/L, and pH was 7; the removal rate of ammonium reached nearly 90%. The changing patterns of different bacteria in strain CW-2-treated and the control pond water were also compared. Lower levels of ammonia, nitrite, and phosphates were observed in the treated water as compared with the controls. Meanwhile, phylum-level distributions of the bacterial OTUs revealed that P roteobacteria, Bacteroidetes, Planctomycetes, and N itrospirae continuously changed their relative abundances in relation to carbon and the addition of strain CW-2; this finding implies that the conventional denitrifi cation process was weakened under the ef fects of carbon or the presence of strain CW-2. We propose that strain CW-2 is a promising organism for the removal of ammonium in intensive fish culture systems, according to our evaluations of its denitrifi cation performance.
WANG CuicuiZHANG KaiXIE JunLIU QigenYU DeguangWANG auangjunYU ErmengGONG WangbaoLI Zhifei