The polymetallic Dushiling W-Cu deposit is a large, altered, skarn-type deposit, located in the northeastern part of the Miao'ershan-Yuechengling pluton, China. Two types of granite have been identified in the deposit: a medium-grained porphyritic biotite granite, and a medium- to fine-grained biotite granite. Both are spatially and temporally related to ore bodies, suggesting they may be the source of mineralization in the deposit. A medium- to fine-grained porphyritic biotite granite is exposed at the surface in the region of mineralization. U-Pb dating of zircons yielded magmatic ages of 423 Ma for the medium-grained porphyritic biotite granite and 421 Ma for the medium- to fine-grained porphyritic biotite granite, while a younger age(217 Ma) obtained for surface samples indicates later diagenesis. Thus, magmatism occurred during the Caledonian and Indosinian, respectively. The petrological and geochemical characteristics of the two Caledonian granites show that both are calc-alkaline and peraluminous.They are moderately enriched in Cs, Rb, U, and REE, and strongly depleted in Sr,Ba,P,and Ti; they show similar REE behavior,including negative Eu anomalies. These geochemical similarities suggest that the two granites were derived from the same source,although they were emplaced during different stages of the evolution of the magma. Furthermore, the granites are associated with mineralization, suggesting they were the source of mineralization in the Dushiling W-Cu deposit. Sm-Nd ages of scheelite from the Dushiling W-Cu deposit indicate that metallogenesis occurred at 417±35 Ma, while the two types of titanite, intergrown with scheelite, yield U-Pb ages of 423–425 Ma(in altered granite sample) and 218 Ma(in skarn sample). These ages place the main mineralization event in the late Caledonian, and later magmatic-hydrothermal activity occurred in the Indosinian. The ages obtained for the Dushiling W-Cu deposit in the western Nanling Range, northern Yuechengling, together with the occurrence and ages of the Niutan
The samples from the hidden Daqiling muscovite monzonite granite, which has recently been recognized within the Limu Sn-polymetallic ore field, have been analyzed for zircon U-Pb ages and whole rock geochemical and Nd-Hf isotopic compositions to discuss its genesis, source, and tectonic setting. LA-ICP-MS zircon U-Pb dating indicates that the granite crystallized in the late Indosinian(224.8±1.6 Ma). The granite is enriched in SiO2 and K2 O and low in CaO and Na2 O. It is strongly peraluminous with the A/CNK values of 1.09–1.20 and 1.4 vol%–2.7 vol% normal corundum. Chondrite-normalized REE patterns show slightly right-dipping shape with strongly negative Eu anomalies(δEu =0.08–0.17). All samples show enrichment of LILEs(Cs, Rb and K) and HFSEs(U, Pb, Ce and Hf), but have relatively low contents of Ba, Sr and Ti. The zircon saturation temperatures(Tzr) are from 711 to 740°C, which are slightly lower than the average value of typical S-type granite(764°C). The granite has negative εNd(t) and εHf(t) values, which change from ?9.1 to ?10.1 with the peak values of ?9.2 to ?9.0 and from ?3.7 to ?12.6 with the peak values of ?6 to ?5, respectively. The C DMT(Nd) and C DMT(Hf) values are 1.74–1.82 Ga with the peak values of 1.73–1.75 Ga and 1.49–2.04 Ga with the peak values of 1.5–1.6 Ga, respectively. These characteristics reveal that the source region of the granite is dominantly late Paleoproterozoic to early Mesoproterozoic crustal materials. Seven inherited magmatic zircons are dated at the age of 248.6±4.3 Ma, which suggests the existence of the early Indosinian granite in Limu area. These zircons have the εHf(t) values of ?6.7– ?2.3, similar to those of the Daqiling granite, implying the involvement of the early Indosinian granite during the formation of the Daqiling granite. Inherited zircon of 945±11 Ma has the εHf(t) and TDM(Hf) values of 8.7 and 1.14 Ga, respectively, compatible with those of the Neoproterozoic a
The Nanling and adjacent regions of South China host a series of tin deposits related to Mesozoic granites with diverse petrological characteristics. The rocks are amphibole-bearing biotite granites, or (topaz-) albite-lepidolite (zinnwaldite) granites, and geochemically correspond to mealuminous and peraluminous types, respectively. Mineralogical studies demonstrate highly distinctive and critical patterns for each type of granites. In mealuminous tin granites amphibole, biotite and perthite are the typical rock-forming mineral association; titanite and magnetite are typical accessory minerals, indicating highjO2 magmatic conditions; cassiterite, biotite and titanite are the principal Sn-bearing minerals; and pure cassiterite has low trace-element contents. However, in peraluminous tin granites zirmwaldite-lepidolite, K-feldspar and albite are typical rock-forming minerals; topaz is a common accessory phase, indicative of high peraluminity of this type of granites; cassiterite is present as a uniquely important tin mineral, typically rich in Nb and Ta. Mineralogical distinction between the two types of tin granites is largely controlled by redox state, volatile content and differentiation of magmatic melts. In oxidized metaluminous granitic melts, Sn4+ is readily concentrated in Ti-bearing rock-forming and accessory minerals. Such Sn-bearing minerals are typical of oxidized tin granites, and are enriched in granites at the late fractionation stage. In relatively reduced peraluminous granitic melts, Sn2+ is not readily incorporated into rock-forming and accessory minerals, except for cassiterite at fractionation stage of granite magma, which serves as an indicator of tin mineralization associated with this type of granites. The nature of magma and the geochemical behavior of tin in the two types of granites thus result in the formation of different types of tin deposits. Metaluminous granites host disseminated tin mineralization, and are locally related to deposits of the chlorite quartz-vein, greisen