Using value distribution theory and techniques in several complex variables,we investigate the problem of existence of m components-admissible solutions of a class of systems of higher-order partial differential equations in several complex variables and estimate the number of admissible components of solutions.Some related results will also be obtained.
Let X be a smooth projective variety of dimension 2k-1 (k≥3) over the complex number field. Assume that fR: X→Y is a small contraction such that every irreducible component Ei of the exceptional locus of fR is a smooth subvariety of dimension k. It is shown that each Ei is isomorphic to the k-dimensional projective space Pk, the k-dimensional hyperquadric surface Qk in Pk+1, or a linear Pk-1-bundle over a smooth curve.