This paper analytically investigates the interaction of light filaments generated by a femtosecond laser beam in air. It obtains the Hamiltonian of a total laser field and interaction force between two filaments with different phase shifts and crossing angles. The property of the interaction force, which leads the attraction or repulsion of filaments, is basically dependent on the phase shift between filaments. The crossing angle between two filaments can only determine the magnitude of the interaction force, but does not change the property of the force.
Through theoretical analysis,we show how aligning pulse durations affect the degree and the time-rate slope of nitrogen field-free alignment at a fixed pulse intensity.It is found that both the degree and the slope first increase,then saturate,and finally decrease with the increasing pump duration.The optimal durations for the maximum degree and the maximum slope of the alignment are found to be different.Additionally,they are found to mainly depend on the molecular rotational period,and are affected by the temperature and the aligning pump intensities.The mechanism of molecular alignment is also discussed.
We present an experimental investigation of a filamentation-assisted fourth-order nonlinear optical process in KTP crystals pumped by intense 1.53 eV (807 nm) femtosecond laser pulses. Femtosecond light pulses at 2.58 eV (480 nm) are generated by the fourth-order nonlinear polarization (p(4) (ω2) = X(4) (ω2, ω, ω, ω, -ω1)E3 (ω)E* (ω1), where E(w) corresponds to the pump frequency and E(wl) to the supercontinuum generated through filamentation). If the system is seeded by a laser beam at ω1 or ω2 and there are spatial and temporal overlaps with the pump beam, E(ω1) and E(ω2) are simultaneously amplified. When the intensity of the seed laser beam exceeds a certain intensity threshold, the contribution of p(4) (ω) = X(4) (ω, ω1, ω2, -ω, -ω)E(ω1)E(ω2)(E* (ω))2 becomes non-negligible, and the amplification weakens. The conversion efficiency from the pump to the signal at 2.58 eV (480 nm) attains to 0.1%.
This paper demonstrates the triggering and guiding of the stationary high voltage (HV) discharges at 5-40kV by using plasma filaments generated by femtosecond laser pulses in air. A significant reduction of the breakdown voltage threshold due to the pre-ionization of the air gap by laser filamentation is observed. The discharge experiments are performed by using laser pulses with different energy from 15-60 mJ. The electron density of filaments is detected by sonography method. The influence of the electron density of laser filaments on the triggering and guiding HV discharge is experimentally investigated. The results have shown that the behaviour of plasma filaments can strongly affect the efficiency of triggering and guiding HV discharge.
Influence of random initial amplitude perturbations on the lilamentation ot prefocused femtosecond laser pulses is numerically studied. Simulations are performed for the filamentation of laser pulses with different modulation degrees and initial geometric focusings. The transverse waist of the laser beam is 5 mm. The behavior of the filament is strongly affected by the initial non-uniformity of the laser pulse envelope for a short initial focal length (f = 1 m). In this case, the filament and plasma channel can survive for a longer distance with a small initial amplitude perturbation. For a laser pulse focused by a lens with a long focal length (f = 4 m), decrease in the initial perturbation does not contribute to the length of the filament and the plasma channel.
The propagation of picosecond deep ultraviolet laser pulse at wavelength of 193 nm in air is numerically investigated. Long plasma channel can be formed due to the competition between Kerr self-focusing and ionization induced defocusing. The plasma channel with electron density of above 10^13/cm^3 can be formed over 70 m by 50-ps, 20-mJ laser pulses. The fluctuation of laser intensity and electron density inside ultraviolet (UV) plasma channel is significantly lower UV laser by air is considered in the simulation and it the limit of the length of plasma channel. than that of infrared pulse. The linear absorption of is shown that the linear absorption is important for the limit of the length of plasma channel.
This paper studies the type-I phase-matched second harmonic generation using 25-fs input laser pulses in a thick BBO crystal. The harmonic signal exhibits a narrow spectrum bandwidth, even though the input pulse has a broad bandwidth. The energy transfer efficiency and modulation of the fundamental spectrum are investigated.
Two interacting light filaments with different initial phases propagating in air are investigated numerically by using a ray tracing method. The evolution of the rays of a filament is governed by a potential field. During propagation, the two potential wells of the two filaments can merge into one or repel each other, depending on the initial phase difference between the two filaments. The study provides a simple description of the interacting filaments.