Three well-dated Sabina Przewalskii ring-width chronologies from Dulan, China, have been used to reconstruct annual precipitation (from prior July to current June) variations on the northeast Tibetan Plateau since 850 AD. The reconstructions account of the instrumentally recorded precipitation variance are: 54.7% for the period of 1385-2000AD; 50.5% for 1099-1384AD and 45.7% for 850-1098AD. On the millenary scale, the precipitation variation over this region displays “W” shape, which has three peaks and two valleys. The precipitation is low during 1571-1879 AD, and high during 1880-2000 AD. 1900-2000 AD is the century with the highest precipitation over the northeast Tibetan Plateau in the last 1000 years, and 1962-2000 is the period with the highest pre- cipitation, and the highest variability of precipitation as well in the last 1000 years. The reconstructed series also reveals that the variability of annual precipitation is large when the precipitation is more, and contrarily, variability is small when the precipitation is low. With the temperature increasing obvi- ously in the 20th century, the precipitation in the study region significantly increased too, the variability of precipitation became larger, and drought and flooding occurred more frequently. The yearly tree-ring width (high frequency signal) series in this region reflects the local annually precipitation variation. However, the series with 40-year moving average (low frequency signal) cor- responds to the Northern Hemisphere temperature variations on the decadal to centurial scale. It correlates significantly with seven temperature curves of the Northern Hemisphere in the different time spans. For example, the correlation coefficients with the most temperature curves are around 0.9 during the period of 1852-1982 AD. In general, the temperature and the precipitation change syn- chronously in the Dulan region. It means that low temperature corresponds to low precipitation, andvice versa. This relationship may indicate that the climatic pattern i
In the reconstruction of past climate using stable carbon isotope composition (δ13C) in tree ring,the responses of the stable carbon composition (δ13C) of multiple tree species to environmental factors must be known detailedly. This study presented two δ13C series in annual tree rings for Chinese hem-lock (Tsuga chinensis Pritz) and alpine pine (Pinus densata Mast),and investigated the relationships between climatic parameters and stable carbon discrimination (△13C) series,and evaluated the poten-tial of climatic reconstruction using △13C in both species,in a temperate-moist region of Chuanxi Pla-teau,China. The raw δ13C series of the two species was inconsistent,which may be a result of different responses caused by tree's inherent physiological differences. After removing the low-frequency ef-fects of CO2 concentration,the high-frequency (year-to-year) inter-series correlation of △13C was strong,indicating that △13C of the two tree species were controlled by common environmental conditions. The △13C series of the species were most significantly correlated with temperature and moisture stress,but in different periods and intensity between the species. During the physiological year,the impacts of temperature and moisture stress on △13C occur earlier for Chinese hemlock (previous December to February for moisture stress and February to April for temperature,respectively) than for alpine pine (March to May for moisture stress and April to July for temperature,respectively). In addition,in temperate-moist regions,the control on △13C of single climatic parameter was not strongly dominant and the op-timal multiple regressions functions just explained the 38.5% variance of the total. Therefore,there is limited potential for using δ13C alone to identify clear,reliable climatic signals from two species.
LIU XiaoHongSHAO XueMeiWANG LiLiZHAO LiangJuWU PuCHEN TuoQIN DaHeREN JiaWen