Work hardening is a well-known phenomenon occurring in crystalline metals during deformation,which has been widely used to increase the strength of metals although their ductility is usually reduced simultaneously. Here we report that the plastic strain of Zr41Ti14Cu12.5Ni10Be22.5 (at.%) bulk metallic glasses has been increased from 0.3% for the as-cast sample to 2.5%-8.0% for samples that have experienced pre-deformation under constrained conditions. The pre-deformed glassy alloys possess more free volume and abundant introduced shear bands,which are believed to promote the activation of shear bands in post-deformation and result in an increase in plasticity. The orientation of the pre-introduced shear bands relative to the loading direction will affect the deformation behavior of pre-deformed samples. The present results show that pre-deformation of this glassy alloy will result in work toughening. This work toughening effect can be removed by isothermal annealing at a sub-Tg (glass transition) temperature,which causes annihilation of free volume and healing of shear bands.
Pd81Si19 amorphous alloys were prepared by combination methods of melt spinning and B2O3 flux treatment. A compari- son between the ribbons prepared from the fluxed ingots and the non-fluxed ones has been carried out. The result reveals that after fluxing treatment the glass transition temperature of the as-prepared glassy ribbons is reduced while the initial crystallization tem- perature is enhanced. It results in that the supercooled liquid region (defined as the difference between the initial crystallization tem- perature and the glass transition temperature) of the glassy alloy treated with fluxing technology has been increased from 31 to 42 K. This shows that fluxing technique can enhance the glass forming ability (GFA) of the binary alloy and improve the thermal stability of supercooled liquid of the glassy alloy.
Na Chen, Kefu Yao, and Fang Ruan Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.