This paper deals with a coupled system of fourth-order parabolic inequalities |u|t ≥ -△2^u+|v|^q, |v|t ≥-△2v+|u|p^ in S=R^n ×R^+ withp, q 〉 1, n ≥1. AFujita- Liouville type theorem is established that the inequality system does not admit nontrivial nonnegative global solutions on S whenever n/4≤ max( p+1/pq-1, q+1/pq-1 ). Since the general maximum-comparison principle does not hold for the fourth-order problem, the authors use the test function method to get the global non-existence of nontrivial solutions.