Columnar grain growth with shear flow in molten pool of Ni-Cr alloy was simulated with a coupled model of grain growth and solute transport.The results indicate that shear flow alters solute distribution at the vicinity of columnar grains.The solute concentration gradient on the upstream side is greater,while that on the downstream side is smaller,leading to asymmetrical growth of columnar grains.In the interior of a columnar grain,solute concentration increases from the bottom to the dendrite tip,but the rate of increase tends to be reduced.The simulated results are consistent with the experiments.
A two-equation K-ε turbulent fluid flow model is built to model the heat transfer and fluid flow in gas tungsten arc welding (GTAW) process of stainless steel S US310 and S US316. This model combines the buoyancy force, lorentz force and marangni force as the driving forces of thefluidflow in the weld pool. The material properties are functions of temperature in this model. The simulated results show that the molten metal flowing outward is mainly caused by the marangoni convection, which makes the weld pool become wider and shallower. The comparison of the weld pool shape of SUS310 and SUS316 shows that the slight differences of the value of thermal conductivity mainly attributes to the difference of the weld pool shape and the distinction of heat transport in laminar and turbulent model makes large diversity in the simulated results.
With more application of welding technology in important structures more attention was paid to the evaluation of the safety of welded structures, the life prediction and decision to repair the welded structures. Based on material fracture mechanism and Chinese standard of safety evaluations of pressure vessels, an expert system was developed to evaluate the safety of welded pressure vessels. The system can analyze the weld defects in a pressure vessel, convert different kinds of defects into equivalent cracks and obtain their equivalent sizes. Furthermore, the system can calculate the stress and strain in the positions of weld defects and make decision on whether the defects are tolerable or not according to the code. When it is tolerable, the system will calculate the safety margin. The fatigue life can be predicted if the defects undergo fatigue load too. Moreover, data bases are built for storing mechanical properties of material and evaluated results.
Three-dimensional finite element model was established to simulate temperature fields of T-joint titanium sheets during TIG welding with finite element method (FEM) software. Temperature dependent material properties and the effect of latent heat were considered. A technique of element birth and death was used to simulate the process of welded metal filling. Dynamic variation process of temperature fields during T1G welding was achieved. The simulated results agreed well with the measured results.