The microstructure, chemical composition and morphology evolution of icosahedral quasicrystalline phase of Mg67.4Zn28.9Y3.7 ternary alloy were investigated in detail at different pouring temperatures by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectrum (EDS). Low interracial energy favors the formation of l-phase. The experimental results show that the primary l-phase reveals petal-shaped with five and six branches, where each branch has facetted growth morphology with the size ranging from 50 to 100μm. As the temperature decreases, the polygon-shaped l-phase forms, attributed to the decomposition of branch of petal-shaped l-phase, and then it grows bigger and some of the fine polygons join together to form large polygons. Besides these, (α-Mg+l-phase) eutectic structures disappear and the relative amount of Mg7Zn3 phase increases as the pouring temperature decreases. The chemical composition and morphology evolution of l-phase were also discussed.
Man Zhu Gencang Yang Diqing Wan Suling Cheng Yaohe Zhou
The mechanical properties (σb,σ0.2,and δ) and fracture behavior of tensile specimens of the refined A356 alloys were investigated as a function of the addition level of Al-Ti-B master alloy under both as-cast and T6 heat-treated conditions. The results show that as the addition level of Al-5Ti-1B master alloy increases from 0.1 wt.% to 5.0 wt.%,the mechanical properties of refined A356 alloys improve steadily and then decrease slightly under both as-cast and T6 heat-treated conditions. Also,they display exc...
In the present investigation, the microstructures and growth morphology of Mg32(Al,Zn)49 Frank-Kasper phase in rapidly solidified Mg32Al17Zn32 temary alloys were studied in detail. The samples were characterised by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), field-emission scanning electron microscopy (FE-SEM) and energy dispersive spectrum (EDS). The results show that the microstructures mainly consist of Mg3e(Al,Zn)49 Frank-Kasper phase and interdendritic Mg-rich O-phase. Under rapid solidification condition, Mg32(Al,Zn)49 Frank-Kasper phase reveals a perfect faceted dendritic characteristic in the shape of a three-fold symmetric microstructure with doublet tips in the axes direction. Observations for fracture surfaces show that the growth morphology of Mg32(Al,Zn)49 grains was truncated cubic, and its growth mechanism was also discussed.
ZHU Man YANG Gencang WAN Diqing WANG Zhijun ZHOU Yaohe
The microstructures and mechanical properties of Al matrix composites reinforced by different volume fractions of Al-Ni-Co intermetallic particles were investigated.Three different volume fractions of Al-Ni-Co particles were added to pure Al matrix using a stir-casting method.Microstructural analysis shows that with the increasing of the reinforcement volume fraction,the matrix grain size decreases and the porosity increases.The mechanical properties of the composites are improved over the matrix materials,except for the decreasing of the ductility.Fracture surface examination indicates that there is a good interfacial bonding between the Al matrix and the Al-Ni-Co particles and the fracture initiation does not occur at the particle-matrix interface.