In this paper, we study the non-isentropic compressible magnetohydrodynamic system with a time periodic external force in R^n. Under the condition that the optimal time decay rates are obtained by spectral analysis, we show that the existence, uniqueness and time-asymptotic stability of time periodic solutions when the space dimension n 〉 5. Our proof is based on a combination of the energy method and the contraction mapping theorem.
We investigate the zero dissipation limit problem of the one-dimensional compressible isentropic Navier-Stokes equations with Riemann initial data in the case of the composite wave of two shock waves. It is shown that the unique solution to the Navier-Stokes equations exists for all time, and converges to the Riemann solution to the corresponding Euler equations with the same Riemann initial data uniformly on the set away from the shocks, as the viscosity vanishes. In contrast to previous related works, where either the composite wave is absent or the effects of initial layers are ignored, this gives the first mathematical justification of this limit for the compressible isentropic Navier-Stokes equations in the presence of both composite wave and initial layers. Our method of proof consists of a scaling argument, the construction of the approximate solution and delicate energy estimates.
In this article, we consider the partial regularity of stationary Navier-Stokes system under the natural growth condition. Applying the method of A-harmonic approximation,we obtain some results about the partial regularity and establish the optimal Holder exponent for the derivative of a weak solution on its regular set.
In this paper we derive LPS's criterion for the breakdown of classical solutions to the incompressible nematic liquid crystal flow, a simplified version of Ericksen-Leslie system modeling the hydrodynamic evolution of nematic liquid crystals in R^3. We show that if 0 〈 T 〈 +∞ is the maximal time interval for the unique smooth solution u ∈ C^∞([0, T),R^3),then |u|+|△d|∈L^q([0,T],L^p(R^3)),where p and q satisfy the Ladyzhenskaya-Prodi-Serrin's condition:3/p+2/q=1 and p∈(3,+∞].
We consider the Stokes approximation equations for compressible flows in /~3. The global unique solution and optimal convergence rates are obtained by pure energy method provided the initial perturbation around a constant state is small. In particular, the optimal decay rates of the higher-order spatial derivatives of the solution are obtained. As an imme- diate byproduct, the usual Lp - L2(1 〈 p 〈 2) type of the optimal decay rate follow without requiring that the Lp norm of initial data is small.
The compressible Navier-Stokes equations driven by a time-periodic external force are considered in this article. We establish the existence of weak time-periodic solutions and improve the result from [3] in the following sense: we extend the class of pressure functions, that is, we consider lower exponent γ.
We study the heat flow of equation of H-surface with non-zero Dirichlet boundary in the present article. Introducing the "stable set" M2 and "unstable set" M1, we show that there exists a unique global solution provided the initial data belong to M2 and the global solution converges to zero in H^1 exponentially as time goes to infinity. Moreover, we also prove that the local regular solution must blow up at finite time provided the initial data belong to M1.
In this paper, we consider a class of superlinear elliptic problems involving trac- tional Laplacian (-△)s/2u = λf(u) in a bounded smooth domain with zero Diriehlet bound- ary condition. We use the method on harmonic extension to study the dependence of the number of sign-changing solutions on the parameter λ.
In this article we consider the compressible viscous magnetohydrodynamic equations with Coulomb force.By spectral analysis and energy methods,we obtain the optimal time decay estimate of the solution.We show that the global classical solution converges to its equilibrium state at the same decay rate as the solution of the linearized equations.