Based on the complex effective conductivity method, a closed-form expression for the internal impedance of mixed carbon nanotube (CNT) bundles, in which the number of CNTs for a given diameter follows a Gaussian distribution, is proposed in this paper. It can appropriately capture the skin effect as well as the temperature effect of mixed CNT bundles. The results of the closed-form expression and the numerical calculation are compared with various mean diameters, standard deviations, and temperatures. It is shown that the proposed model has very high accuracy in the whole frequency range considered, with maximum errors of 1% and 2.3% for the resistance and the internal inductance, respectively. Moreover, by using the proposed model, the high-frequency electrical characteristics of mixed CNT bundles are deeply analyzed to provide helpful design guidelines for their application in future high-performance three-dimensional integrated circuits.
Through-silicon-via (TSV) to TSV crosstalk noise is one of the key factors affecting the signal integrity of three- dimensional integrated circuits (3D ICs). Based on the frequency dependent equivalent electrical parameters for the TSV channel, an analytical crosstalk noise model is established to capture the TSV induced crosstalk noise. The impact of various design parameters including insulation dielectric, via pitch, via height, silicon conductivity, and terminal impedance on the crosstalk noise is analyzed with the proposed model. Two approaches are proposed to alleviate the TSV noise, namely, driver sizing and via shielding, and the SPICE results show 241 rnV and 379 mV reductions in the peak noise voltage, respectively.
A 3rd-order Butterworth active-RC complex band-pass filter was presented for Zig Bee(IEEE802.15.4) transceiver applications. The filter adopted cascaded complex pole stages to realize the 3 MHz bandwidth with a centre frequency of 2 MHz which was required by the Zig Bee transceiver applications. An automatic frequency tuning scheme was also designed to accommodate the performance deterioration due to the process, voltage and temperature(PVT) variations. The whole filter is implemented in a 0.18 μm standard process and occupies an area of 1.3 mm×0.6 mm. The current dissipation is 1.2 m A from a 1.8 V single power supply. Measurement results show that the image rejection ratio(IRR) of the filter is 24.1 d B with a pass-band ripple less than 0.3 d B. The adjacent channel rejection is 29.8 d B@7 MHz and alternate channel rejection 47.5 d B@12 MHz, respectively.
We present an accurate through silicon via (TSV) thermal mechanical stress analytical model which is verified by using finite element method (FEM). The results show only a very small error. By using the proposed analytical model, we also study the impacts of the TSV radius size, the thickness, the material of Cu diffusion barrier, and liner on the stress. It is found that the liner can absorb the stress effectively induced by coefficient of thermal expansion mismatch. The stress decreases with the increase of liner thickness. Benzocyclobutene (BCB) as a liner material is better than SiO2. However, the Cu diffusion barrier has little effect on the stress. The stress with a smaller TSV has a smaller value. Based on the analytical model, we explore and validate the linear superposition principle of stress tensors and demonstrate the accuracy of this method against detailed FEM simulations. The analytic solutions of stress of two TSVs and three TSVs have high precision against the finite element result.
In this paper,ground-signal-ground type through-silicon vias(TSVs) exploiting air gaps as insulation layers are designed,analyzed and simulated for applications in millimeter wave.The compact wideband equivalent-circuit model and passive elements(RLGC) parameters based on the physical parameters are presented with the frequency up to 100 GHz.The parasitic capacitance of TSVs can be approximated as the dielectric capacitance of air gaps when the thickness of air gaps is greater than 0.75 μm.Therefore,the applied voltage of TSVs only needs to achieve the flatband voltage,and there is no need to indicate the threshold voltage.This is due to the small permittivity of air gaps.The proposed model shows good agreement with the simulation results of ADS and Ansoft's HFSS over a wide frequency range.
Through silicon via (TSV)-TSV coupling is detrimental to the performance of three-dimensional (3D) integrated circuits (ICs) with the major negative effect of introducing coupling noise. In order to obtain an accurate estimation of the coupling level from TSV-TSV in the early design stage, this paper first proposes an impedance- level model of the coupling channel between TSVs based on a two-port network, and then derives the formula of the coupling coefficient to describe the TSV-TSV coupling effect. The accuracy of the formula is validated by comparing the results with 3D full-wave simulations. Furthermore, a design technique for optimizing the coupling between adjacent coupled signal TSVs is proposed. Through SPICE simulations, the proposed technique shows its feasibility to reduce the coupling noise for both a simple TSV-TSV circuit and a complicated circuit with more TSVs, and demonstrates its potential for designers in achieving the goal of improving the electrical pertbrmance of3D ICs.