您的位置: 专家智库 > >

陕西省自然科学基金(2006A09)

作品数:22 被引量:19H指数:3
相关作者:魏娜钮鹏程朱茂春张颜云毛彦军更多>>
相关机构:西北工业大学西安财经学院更多>>
发文基金:陕西省自然科学基金国家自然科学基金更多>>
相关领域:理学更多>>

文献类型

  • 21篇中文期刊文章

领域

  • 21篇理学

主题

  • 8篇HEISEN...
  • 6篇增长性
  • 6篇级数
  • 5篇等式
  • 5篇DIRICH...
  • 5篇不等式
  • 3篇算子
  • 3篇函数
  • 3篇HARDY型
  • 3篇HARDY型...
  • 2篇上凸函数
  • 2篇特征值
  • 2篇凸函数
  • 2篇HARDY不...
  • 2篇LAPLAC...
  • 2篇MORREY...
  • 2篇存在性
  • 2篇P
  • 1篇带权
  • 1篇定理

机构

  • 21篇西北工业大学
  • 1篇西安财经学院

作者

  • 6篇魏娜
  • 4篇钮鹏程
  • 3篇朱茂春
  • 3篇毛彦军
  • 3篇张颜云
  • 2篇王家林
  • 2篇窦井波
  • 2篇郭千桥
  • 2篇魏江勇
  • 2篇丁晓庆
  • 1篇唐素芳
  • 1篇李闻白
  • 1篇刘军霞
  • 1篇张莹莹
  • 1篇高丹
  • 1篇王彦林
  • 1篇李俊兵
  • 1篇欧亚飞
  • 1篇孙华杰
  • 1篇吕伟

传媒

  • 9篇纺织高校基础...
  • 4篇西安工业大学...
  • 1篇系统科学与数...
  • 1篇数学物理学报...
  • 1篇西北大学学报...
  • 1篇高等数学研究
  • 1篇商丘师范学院...
  • 1篇中国科学院研...
  • 1篇吉林大学学报...
  • 1篇西南民族大学...

年份

  • 1篇2010
  • 7篇2009
  • 9篇2008
  • 4篇2007
22 条 记 录,以下是 1-10
排序方式:
Heisenberg群上退化椭圆方程弱解的正则性被引量:1
2009年
假定散度型方程的系数矩阵满足一致椭圆性条件,关于自变量x满足VMO(零平均震荡)条件,且低阶项满足自然增长条件.利用反向Hlder不等式和凝固系数法,建立Heisenberg群上一类退化椭圆方程弱解的内部正则性,得到了弱解的内部Morrey正则性,并在更强的条件下得到了弱解的具有确切指数的内部Hlder连续性.
高丹唐素芳
关键词:HEISENBERG群退化椭圆方程
向量场构成的p次椭圆算子的Dirichlet特征值问题
2007年
建立了与满足Hrmander条件的向量场相联系的Ljusternik-Schnirelman原理,从而得到Ljusternik-Schnirelman序列的存在性,由此证明了由这组向量场构成的p次椭圆算子的Dirichlet特征值问题的存在性.
魏娜毛彦军
全平面有限级Dirichlet级数的增长性被引量:3
2008年
研究有限级整Dirichlet级数的准确级增长性与系数之间的关系.借鉴前人证明方法,在减弱已有结果的条件下,得到了一个更强的结果.并将已有结果中的反函数替换为原函数,从而简化了计算.
朱茂春张颜云
关键词:DIRICHLET级数增长性
Heisenberg群上高阶退化椭圆方程解的Morrey正则性被引量:2
2009年
为了得到Heisenberg群上具有不连续系数的高阶退化椭圆方程强解的Morrey正则性,利用了Heisenberg群上奇异积分和奇异积分与BMO函数的交换子在Morrey空间上的有界性,通过凝固系数法,并将高阶向量场导数表示为奇异积分及交换子的和,由加权Morrey半范数的内插不等式得到高阶退化椭圆方程强解在Morrey空间中的正则性.
李俊兵魏娜
关键词:HEISENBERG群MORREY空间奇异积分
右半平面上随机Dirichlet级数的增长性被引量:2
2010年
研究右半平面上无限级随机Dirichlet级数的增长性.利用型函数证明了:若随机Dirichlet级数f(s,ω)=∑∞n=1anXn(ω)exp(-λns)(s=σ+it),满足limn→∞ln|an|λn=0,nl→im∞lλnnn=0,且随机变量{Xn(ω)}满足sn≥up1{E|Xn|α}<+∞,snu≥1p{E|Xn|-β}<+∞,则limσ→0+ln+ln+M(σ,ω)lnU(1/σ)=1 n l→im+∞tn=1,得到了关于无限级随机Dirichlet级数增长性的一个充要条件.
张莹莹
关键词:随机DIRICHLET级数型函数增长性
Heisenberg群上无穷远处的集中列紧原理和具有Sobolev临界指数的p-次Laplace方程多解的存在性
2009年
通过建立Heisenberg群上无穷远处的集中列紧原理,研究了如下P-次Laplace方程其中ξ∈H^n,λ∈R,1j,且m,j为整数.
窦井波郭千桥
关键词:HEISENBERG群PALAIS-SMALE条件
Heisenberg群上p-次Laplace算子的Dirichlet特征值估计
2008年
我们研究了Heisenberg群Hn中具有光滑边界的域上p-次Laplace算子的Dirichlet特征值问题.运用Ljusternik-Schnirelman原理,我们给出了特征值序列的存在性,然后利用有界域上的Hardy型不等式,给出了基本特征值率的估计.
魏江勇魏娜
关键词:HEISENBERG群特征值估计HARDY型不等式
关于零级整Dirichlet级数的增长性被引量:3
2009年
研究了零级整Dirichlet级数增长性与系数的关系,在将原指数条件减弱的情况下,利用主指标序列的研究方法,简化了原证明过程,并得到同样的结果.
吕伟朱茂春
关键词:DIRICHLET级数增长性
无限级整Dirichlet级数的增长性
2008年
为了研究无限级整Dirichlet级数的增长性,引入一类严格单调增函数,提出一种新的指标.在较弱的指数条件下,得到了无限级整Dirichlet级数关于此函数的增长性与其系数的关系.此函数的引入对于研究无限级整Dirichlet级数增长性有一定的理论意义.
丁晓庆张颜云朱茂春
关键词:DIRICHLET级数无限级增长性
Heisenberg群上的一阶带权插值不等式被引量:1
2008年
研究了一阶带权的插值不等式在Heisenberg群上成立的一个充分条件.通过建立一类Hardy型不等式,得到了Heisenberg群上的一阶带权的插值不等式.并将著名的Caf-farelli-Kohn-Nirenberg不等式部分地推广到了Heisenberg群上.
钮鹏程毛彦军
关键词:HEISENBERG群HARDY型不等式PICONE恒等式
共3页<123>
聚类工具0