We developed a new scheme to suppress the electric-field-screening effect in high growth density of a carbon nanotube(CNT) film during its intense pulsed emission.We synthesize the CNT film on a tridimensional surface(t-CNT film).The tridimensional surface includes wet etched silicon pyramids,and the Ni layer is electroless plated thereon.The intense pulsed emission characteristics of the t-CNT and planar-grown CNT(p-CNT) films were measured using a diode structure in single-pulse mode.The even turn-on field decreased from 5.5 V/μm for p-CNTs to 2.8 V/m for t-CNTs,and the peak emission current increased from 232 A for p-CNTs to 324 A for t-CNTs at a peak field intensity ~12.2 V/m.The peak current of the t-CNT film increased by ~39.7% over the p-CNT film.It is clear that the micro-pyramid array can effectively suppress the field screening effect to improve the electron-emission of CNT films.
Carbon nanotube(CNT)films were grown on silicon wafers with and without a nickel layer(Si-CNT and Ni-CNT)via the pyrolysis of iron phthalocyanine.The nickel layer was prepared using the electroless plating method.To study the emission stability of Si-CNT and Ni-CNT cathodes during intense pulsed emission,emission characteristics were measured repeatedly with a diode structure using a Marx generator as a voltage source.For the peak values of the pulsed voltage,which were in the range between 1.62-1.66 MV(corresponding to electric field intensities between 11.57-11.85 V/μm),the first cycle emission current was 109.4 A for Si-CNT and 180.5 A for Ni-CNT.By comparing the normalized emission currents of the Si-CNT and Ni-CNT cathodes,the improvement in the emission stability can be easily quantified.The number of emission cycles necessary for the peak current to decay from 100%to 50%increased from^3 for Si-CNT to^11 for a Ni-CNT film.
Laser was coupled into an optical fiber,on which covered a layer of well-aligned carbon nanotubes(CNTs)serving as cathode,to tune the field emission of the cathode.CNT arrays as field emission cathode were synthesized by chemical vapor deposition(CVD)on a naked fiber core.When the laser was coupled into the fiber,the turn-on voltage(Vto at a current density of 1 mA cm?2)decreased from 1.0 to 0.9 kV and the emission current density increased from 0.83 mA cm?2(at a 1 kV bias voltage)to3.04 mA cm?2 on 40μm diameter fiber.A photon absorption mechanism is attributed to the field emission improvement.The estimated effective work function of CNT arrays on the optical fiber decrease from 4.89 to 4.29 eV.The results show the possibility of constructing a waveguide type laser modulated field emission cathode.