您的位置: 专家智库 > >

国家自然科学基金(s10671062)

作品数:2 被引量:2H指数:1
发文基金:国家自然科学基金中国博士后科学基金国家教育部博士点基金更多>>
相关领域:理学自动化与计算机技术更多>>

文献类型

  • 2篇中文期刊文章

领域

  • 2篇理学
  • 1篇自动化与计算...

主题

  • 1篇MULTIP...
  • 1篇TYPE
  • 1篇WAVELE...
  • 1篇ARIA
  • 1篇BIV
  • 1篇ED
  • 1篇HAAR
  • 1篇LET
  • 1篇O
  • 1篇RAL
  • 1篇DYADIC

传媒

  • 2篇Acta M...

年份

  • 1篇2013
  • 1篇2011
2 条 记 录,以下是 1-2
排序方式:
Pointwise Convergence of Wavelets of Generalized Shannon Type
2013年
In this paper, a new result on pointwise convergence of wavelets of generalized Shannon type is proved, which improves a theorem established by Zayed.
Xian Liang SHIWei WANG
Dyadic Bivariate Wavelet Multipliers in L^2(R@2)被引量:2
2011年
The single 2 dilation wavelet multipliers in one-dimensional case and single A-dilation (where A is any expansive matrix with integer entries and [detA[ = 2) wavelet multipliers in twodimen- sional case were completely characterized by Wutam Consortium (1998) and Li Z., et al. (2010). But there exist no results on multivariate wavelet multipliers corresponding to integer expansive dilation matrix with the absolute value of determinant not 2 in L^2(R^2). In this paper, we choose 2I2 = (02 20 ) as the dilation matrix and consider the 212-dilation multivariate wavelet ψ = {ψ1, ψ2, ψ3 } (which is called a dyadic bivariate wavelet) multipliers. Here we call a measurable function family f ={fl, f2, f3} a dyadic bivariate wavelet multiplier if ψ1 = (F^-1(f1ψ1),F^-1(f2ψ2), F-l(f3ψ3)} is a dyadic bivariate wavelet for any dyadic bivariate wavelet ψ = {ψ1, ψ2, ψ3}, where f and F^- 1 denote the Fourier transform and the inverse transform of function f respectively. We study dyadic bivariate wavelet multipliers, and give some conditions for dyadic bivariate wavelet multipliers. We also give concrete forms of linear phases of dyadic MRA bivariate wavelets.
Zhong Yan LIXian Liang SHI
共1页<1>
聚类工具0