Silicon has been investigated intensively as a promising anode material for rechargeable lithium-ion batteries. The choice of a binder is very important to solve the problem of the large capacity fade observed along cycling. The effect of modified elastomeric binders on the electrochemical performance of crystalline nano-silicon powders was studied. Compared with the conventional binder (polyvinylidene fluoride (PVDF)), Si electrodes using the elastomeric styrene butadiene rubber (SBR) and sodium carboxymethyl cellulose (SCMC) com- bined binder show an improved cycling performance. The reversible capacity of the Si electrode with the SCMC/SBR binder is as high as 2221 mA.h/g for 30 cycles in a voltage window between 0.005 and 2 V. The structure changes from SEM images of the silicon electrodes with different binders were used to explore the property improvement.