The formation conditions of C, Al4C3 and Al2O3 in the Al Cl disproportionation process in vacuum to produce aluminum was investigated by thermodynamics analysis. It is demonstrated that the required temperatures for the reactions to form these impurities, the disproportionation of CO and the reactions of metallic aluminum with CO, decrease with decreasing pressure. The lg pCO-1/T diagram of metallic aluminum-CO system agrees with the experimental results, indicating that the reaction rate is very high and this system in vacuum is approximately in equilibrium; therefore, the equilibrium diagram can be used to predict the possible reactions in this system in vacuum.
The crystallization behavior and kinetics of CaO-MgO-Al2O3 SiO2(CMAS) glass with the Fe2O3 content ranging from zero to 5%were investigated by differential scanning calorimetry(DSC).The structure and phase analyses were made by Fourier transform infrared spectroscopy(FT-IR) and X-ray diffraction(XRD).The experiment results show that the endothermic peak temperature about 760℃ is associated with transition and the exothermic peak temperature about 1000℃ is associated with crystallization.The crystallization peak temperature decreases with increasing the Fe203 content.The crystallization mechanism is changed from two-dimensional crystallization to one-dimensional growth,and the intensity of diopside peaks becomes stronger gradually.There is a saltation for the crystallization temperature with the addition of 0.5%Fe2O3 due to the decomposition of Fe2O3.Si-O-Si,O-Si-O and T-O-T(T=Si,Fe,Al) linkages are observed in Fe2O3-CaO-MgO-Al2O3-SiO2 glass.
Activated ceria (CeO2/γ-Al2O3) prepared by impregnation was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and hydrogen temperature-programmed reduction (TPR). The desulfurization of the activated ceria was investigated by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TG). The results showed that ceria could be highly dispersed or crystallized on the surface of γ-alumina. The reduction temperatures of 0.1CeO2/γ-Al2O3, 0.45CeO2/7-A1203, and CeO2 ranged from 250℃ to 470℃, 330℃ to 550℃, and 350℃ to 550℃, respectively. The reduction peak temperature of 0.45CeO2/γ-Al2O3 was higher than that of 0.1CeO2/γ-Al2O3, which was consistent with the reduction temperature of CeO2. 02 participated in the reaction between ceria and sulfur dioxide. The desulfurization product was cerium(III) sulfate. The intensity of the hydroxyl band decreased with the formation of sulfate species.
Qing-chun YuYong DengFei WangYue-bin FengXiu-min ChenBin YangDa-chun Liu
Desulfurization experiments of CuO, γ-Al2O3 and CuO/γ-Al2O3 were made in simulated flue gas by means of thermogravimetric analysis. It is found that reaction activities of CuO supported on γ-Al2O3 could be highly improved. Desulfurization kinetics of CuO/γ-Al2O3 was studied in the temperature range of 250 °C-400 °C and SO2 concentration of 0.1%-0.9%. The experimental data were tested and compared with kinetics models of volume reaction model(VRM), grain size model(GSM), random pore model(RPM) and pore-blocking model(PBM). Correlation analysis shows that VRM and RPM models do not fit experimental data well. GSM contradicts with the changes in the physical and chemical properties of Cu O/γ-Al2O3 as the desulfurization proceeds. It is found that PBM is consistent with the change of pore structure of CuO/γ-Al2O3 sorbent during desulfurization process and predicts the conversion-time curves of the sorbent well. Meanwhile, kinetics parameters are obtained and discussed.