In this paper, we derive a new method for a nonlinear Schrodinger system by using the square of the first-order Fourier spectral differentiation matrix D1 instead of the traditional second-order Fourier spectral differentiation matrix D2 to approximate the second derivative. We prove that the proposed method preserves the charge and energy conservation laws exactly. A deduction argument is used to prove that the numerical solution is second-order convergent to the exact solutions in ||·||2 norm. Some numerical results are reported to illustrate the efficiency of the new scheme in preserving the charge and energy conservation laws.
A local energy conservation law is proposed for the Klein--Gordon-Schrrdinger equations, which is held in any local time-space region. The local property is independent of the boundary condition and more essential than the global energy conservation law. To develop a numerical method preserving the intrinsic properties as much as possible, we propose a local energy-preserving (LEP) scheme for the equations. The merit of the proposed scheme is that the local energy conservation law can hold exactly in any time-space region. With the periodic boundary conditions, the scheme also possesses the discrete change and global energy conservation laws. A nonlinear analysis shows that the LEP scheme converges to the exact solutions with order O(τ2 + h2). The theoretical properties are verified by numerical experiments.