Wet etching has been widely used in defect evaluation for Ga-face GaN and surface roughness for N-face GaN dodecagonal pyramids has been fabricated on laser-lift-off N-face GaN by hot phosphor acid etching.The dodecagonal pyramid shows twelve facets including six{20-2-3}and six{22-4-5}planes.From cross-sectional TEM image,it is shown that the pyramid corresponds to the top of the edge dislocation.Compared with hexagonal pyramid-surface light emitting diodes(LEDs)etched by commonly used photoelectrochemical(PEC)process in KOH aqueous,the dodecagonal pyramid-surface LEDs show improved light extraction efficiency because of more facets,which effectively reduces the total internal reflection.
QI ShengLi,CHEN ZhiZhong,SUN YongJian,FANG Hao,TAO YueBin,SANG LiWen,TIAN PengFei,DENG JunJing,ZHAO LuBing,YU TongJun,QIN ZhiXin&ZHANG GuoYi State Key Laboratory for Artificial Microstructure and Mesoscopic Physics,School of Physics,Peking University,Beijing 100871,China
We have investigated the transverse mode pattern and the optical field confinement factor of gallium nitride (GaN) laser diodes (LDs) theoretically. For the particular LD structure, composed of approximate 4 μm thick n-GaN substrate layer, the maximum optical confinement factor was found to be corresponding to the 5^th order transverse mode, the so-called lasing mode. Moreover, the value of the maximum confinement factor varies periodically when increasing the n-side GaN layer thickness, which simultaneously changes and increases the oscillation mode order of the GaN LD caused by the effects of mode coupling. The effects of the thickness and the average composition of Al in the AlGaN/GaN superlat.tice on the optical confinement factor are also presented. Finally, the mode coupling and optimization of the layers in the GaN-based LD are discussed.
We investigate the transverse mode pattern in GaN quantum-well (QW) laser diode (LD) by numerical calculation. We optimize the current GaN LD structure by varying the n-GaN layer thickness. The n-type GaN layer is an important factor to determine the optical mode. Finally, we discuss the lasing performance of the GaN LD based on the transverse optical modes.
We present a grating model of two-dimensional (2D) rigorous coupled wave analysis (RCWA) to study top diffraction gratings on light-emitting diodes (LEDs). We compare the integrated-transmission of the non-grating, rectangular-grating, and triangular-grating cases for the same grating period of 6 μm, and show that the triangular grating has the best performance. For the triangular grating with 6-μm period, the LED achieves the highest light transmission at 6-μm grating bottom width and 2.9-μm grating depth. Compared with the non-grating case, the optimized light transmission improvement is about 74.6%. The simulation agrees with the experimental data of the thin polymer grating encapsulated flip-chip (FC) GaN-based LEDs for the light extraction improvement.